声学的分类

声波的概念很多,纵波,横波,sh波,sv波,兰姆波,瑞利波,导波,声表面波。。。。下面就分类问题做阐述

声波首先有体波,体波包含p波(体纵波)和s波(体横波)。在s波中根据偏振方向不同分为sh(水平偏振)sv(垂直偏振)

然后声波中还有表面波,表面波包含瑞丽波和乐普波。瑞丽波较为常见,它实际上是横波和纵波的合成。

然后声波包含导波,比如说板波,板波中最主要的是兰姆波。从振动形态来看,兰姆波相当于纵波和横波的合成,他跟瑞丽波相似,质点成椭圆振动。根据其对称模式可以分为An型和Sn型。具体请参考超声波检测(无损检测教材)第二版135页。


### 深度学习在声学信号处理中的盲源分离与分类 #### 概述 深度学习显著提升了语音分离的效果,尤其是在单通道语音分离方面已经超越了传统方法[^1]。然而,在多通道情况下,传统的信号处理方法仍然具有优势。 #### 技术背景 一套完整的语音识别系统通常由多个模块组成,包括预处理、特征提取、声学模型、语言模型以及搜索算法等部分[^2]。这些组件共同工作以提高语音识别的准确性。 #### 深度聚类应用于声学信号处理 近年来,一种名为深度聚类的技术被提出并证明对于语音和音乐的有效分离非常有用。这项技术的核心是在潜在表征上执行聚类操作而非直接作用于权重矩阵之上。具体来说,先利用深度神经网络将原始频谱图映射成更具表达力的低维嵌入空间内的向量形式,之后再在这个转换后的域内实施K-means或其他类型的聚类分析。这种策略能够获得更高质量的声音片段划分结果[^3]。 ```python import torch from sklearn.cluster import KMeans class DAE(torch.nn.Module): def __init__(self, input_dim=257, hidden_dims=[500, 500], output_dim=257): super(DAE, self).__init__() layers = [] dims = [input_dim] + hidden_dims for i in range(len(dims)-1): layers.append(torch.nn.Linear(dims[i], dims[i+1])) layers.append(torch.nn.ReLU()) layers.append(torch.nn.Linear(hidden_dims[-1], output_dim)) self.encoder_decoder = torch.nn.Sequential(*layers) def train_dae(model, data_loader, optimizer, criterion, epochs=100): model.train() for epoch in range(epochs): running_loss = 0.0 for batch_idx, (inputs,) in enumerate(data_loader): inputs = inputs.to(device) outputs = model(inputs) loss = criterion(outputs, inputs) optimizer.zero_grad() loss.backward() optimizer.step() running_loss += loss.item() * inputs.size(0) print(f'Epoch {epoch}, Loss: {running_loss / len(data_loader.dataset)}') # 使用DAE训练得到的编码器输出作为新特征用于后续任务 encoded_features = dae_model.encoder_decoder[:-(len(hidden_dims)+1)](data).detach().numpy() kmeans = KMeans(n_clusters=num_speakers) labels = kmeans.fit_predict(encoded_features) ``` 上述代码展示了如何构建一个简单的去噪自编码器(DAE),并通过其内部表示来进行聚类分析。这里假设`data`是一个包含了混合音频样本的数据集,并且每个样本已经被分割成了固定长度的时间帧序列。经过充分迭代后,可以从最后一层之前的隐藏单元获取到压缩版的特征描述子,进而送入标准机器学习工具包完成最终的目标——即不同说话人的区分。 #### 多模态共享学习的应用场景 值得注意的是,在某些特定条件下,即使只有一种感官信息可得的情况下也可以借助其他类型的信息辅助建模过程。比如在一个只有视觉线索却缺乏听觉反馈的任务里,依然可以通过预先建立起来的知识关联机制来增强单一感知渠道的表现能力[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值