直方图均衡化是一种很简单的图像处理方法,它的作用是增强对比度,使得图片看上去更清晰。
对于灰度图,增强对比度就是使黑色像素更黑、白色像素更白。对于RGB图像,增强对比度就是使颜色更加鲜艳。
直方图均衡化分三步(以256色灰度图像为例):
1、统计256种颜色出现频率,得到一个包含256个元素的数组A
2、对数组A进行变形,B[i]=sum(A[j] for j in range(i))×255/sum(A),数组B就相当于新的颜色映射
3、用数组B对图像中原有数据进行映射,得到新的图像数组C
from PIL import Image
import matplotlib.pyplot as plt
import numpy as np
def histogram(a):
# 统计各个颜色出现的频率
cnt = [0] * 256
for i in a:
cnt[i] += 1
return cnt
def transform(a):
# 为各个颜色赋予新的颜色值
su = sum(a)
ans = [0] * 256
s = 0
for i in range(len(a)):
s += a[i]
ans[i] = int(255 * s / su)
return ans
def map_by(a, b):
# 根据映射b,将a数组中的元素映射为新的数组
ans = []
for i in a:
ans.append(b[i])
return ans
img = Image.open("haha.BMP")
data = list(img.getdata())
new_data = map_by(data, transform(histogram(data)))
plt.subplot(221).hist(data, bins=256, rwidth=0.8, color='b')
plt.subplot(222).hist(new_data, bins=256, rwidth=0.8, color='r')
plt.subplot(223).imshow(np.reshape(data, (img.size[1], img.size[0])), cmap='Greys_r')
plt.subplot(224).imshow(np.reshape(new_data, (img.size[1], img.size[0])), cmap='Greys_r')
plt.show()
old_hist = sorted(histogram(data))
new_hist = sorted(histogram(new_data))
print(old_hist, new_hist)
这么简单的算法竟然效果很好,我怎么就没想到。
直方图均衡化实际上就是对颜色直方图做一个拉伸变换。直方图均衡化建立了一个颜色映射表,这个表是多对一映射。因为直方图均衡化过程中用到了浮点运算,即原来图像中的灰度为3的像素和灰度为4的像素可能同时被映射成了灰度为2像素,这就导致频率发生细微变化。
直方图均衡化可以用来增强对比度,不仅仅可以用于图像,也可以用于其它任何形式的数据。这种方法把原来密集集中在(100,150)范围内的数据(举个例子)延展到了(0,255),这样就会使得数据对比度更明显。