直方图均衡化

直方图均衡化是一种很简单的图像处理方法,它的作用是增强对比度,使得图片看上去更清晰。
对于灰度图,增强对比度就是使黑色像素更黑、白色像素更白。对于RGB图像,增强对比度就是使颜色更加鲜艳。

直方图均衡化分三步(以256色灰度图像为例):
1、统计256种颜色出现频率,得到一个包含256个元素的数组A
2、对数组A进行变形,B[i]=sum(A[j] for j in range(i))×255/sum(A),数组B就相当于新的颜色映射
3、用数组B对图像中原有数据进行映射,得到新的图像数组C

from PIL import Image
import matplotlib.pyplot as plt
import numpy as np


def histogram(a):
    # 统计各个颜色出现的频率
    cnt = [0] * 256
    for i in a:
        cnt[i] += 1
    return cnt


def transform(a):
    # 为各个颜色赋予新的颜色值
    su = sum(a)
    ans = [0] * 256
    s = 0
    for i in range(len(a)):
        s += a[i]
        ans[i] = int(255 * s / su)
    return ans


def map_by(a, b):
    # 根据映射b,将a数组中的元素映射为新的数组
    ans = []
    for i in a:
        ans.append(b[i])
    return ans


img = Image.open("haha.BMP")
data = list(img.getdata())
new_data = map_by(data, transform(histogram(data)))
plt.subplot(221).hist(data, bins=256, rwidth=0.8, color='b')
plt.subplot(222).hist(new_data, bins=256, rwidth=0.8, color='r')
plt.subplot(223).imshow(np.reshape(data, (img.size[1], img.size[0])), cmap='Greys_r')
plt.subplot(224).imshow(np.reshape(new_data, (img.size[1], img.size[0])), cmap='Greys_r')
plt.show()
old_hist = sorted(histogram(data))
new_hist = sorted(histogram(new_data))
print(old_hist, new_hist)

695653-20170626224929399-273356962.png

这么简单的算法竟然效果很好,我怎么就没想到。

直方图均衡化实际上就是对颜色直方图做一个拉伸变换。直方图均衡化建立了一个颜色映射表,这个表是多对一映射。因为直方图均衡化过程中用到了浮点运算,即原来图像中的灰度为3的像素和灰度为4的像素可能同时被映射成了灰度为2像素,这就导致频率发生细微变化。

直方图均衡化可以用来增强对比度,不仅仅可以用于图像,也可以用于其它任何形式的数据。这种方法把原来密集集中在(100,150)范围内的数据(举个例子)延展到了(0,255),这样就会使得数据对比度更明显。

转载于:https://www.cnblogs.com/weiyinfu/p/7076023.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值