基于Bert-NER构建特定领域中文信息抽取框架


向AI转型的程序员都关注了这个号????????????

机器学习AI算法工程   公众号:datayx

知识图谱(Knowledge Graph)主要由实体、关系和属性构成,而信息抽取(Information Extraction)作为构建知识图谱最重要的一个环节,目的就是从文本当中抽取出三元组信息,包括“实体-关系-实体”以及“实体-属性-实体”两类。然后将抽取后的多个三元组信息储存到关系型数据库(neo4j)中,便可得到一个简单的知识图谱。

本文通过多个实验的对比发现,结合Bert-NER和特定的分词、词性标注等中文语言处理方式,获得更高的准确率和更好的效果,能在特定领域的中文信息抽取任务中取得优异的效果。

1 信息抽取和知识图谱

目录

1 命名实体识别

  • Bert-BiLSTM-CRF命名实体识别模型

  • NeuroNER和BertNER的中文NER对比

  • Bert-NER在小数据集下训练的表现

2 中文分词与词性标注

  • (Jieba、Pyltp、PkuSeg、THULAC)中文分词和词性标注工具性能对比

  • 分词工具与BertNER结合使用的性能

3 中文指代消解

  • 基于Stanford coreNLP的指代消解模型

  • 基于BertNER的中文指代消解框架

4 中文信息提取系统

  • 中文信息抽取框架测试结果

一、命名实体识别

1.1 综述:

命名实体识别(Name Entity Recognition)是获取三元组中的实体的关键。命名实体指的是文本中具有特定意义或者指代性强的实体,常见的包括人名、地名、组织名、时间、专有名词等。就目前来说,使用序列标注的方法能够在NER任务中获得比较优异的效果,相对来说比较成熟。

2 NER发展趋势图

序列标注任务,即在给定的文本序列上预测序列中需要作出标注的标签。处理方式可简单概括为:先将token从离散one-hot表示映射到低维空间中成为稠密的embedding,随后将句子的embedding序列输入到RNN中,使用神经网络自动提取特征以及Softmax来预测每个token的标签。

本文对比了基于Bert的命名实体识别框架和普通的序列标注框架在模型训练、实体预测等方面的效果,并对基于小数据集的训练效果做出实验验证。

1.2模型:

1.2.1 Word Embedding-BiLSTM-CRF:

众多实验表明,该结构属于命名实体识别中最主流的模型,代表的工具有:NeuroNER。它主要由Embedding层(主要有词向量,字向量以及一些额外特征)、双向LSTM层、以及最后的CRF层构成,而本文将分析该模型在中文NER任务中的表现。

3 “词向量+BiLSTM+CRF”三层模型构造图

注:NER任务需要得到实体词的输出,所以使用字向量作为输入。

1.2.2 Bert-BiLSTM-CRF:

随着Bert语言模型在NLP领域横扫了11项任务的最优结果,将其在中文命名实体识别中Fine-tune必然成为趋势。它主要是使用bert模型替换了原来网络的word2vec部分,从而构成Embedding层,同样使用双向LSTM层以及最后的CRF层来完成序列预测。详细的使用方法可参考:基于BERT预训练的中文NER(https://blog.csdn.net/macanv/article/details/85684284)

1.3 NeuroNER和BertNER的中文NER实验

1.3.1实验数据

1.3.1.1数据来源:

本文的NER实验数据是来自于人民网的将近7万句(250万字)中文新闻语料。

4 CSV格式的原始数据

1.3.1.2 数据样式:

本文选用BIO标注法,其中”B“表示实体起始位置,”I“表示实体内容位置,”O“表示非实体。将7万条数据样本经过清洗后,按字进行分割,使用BIO标注形式标注四类命名实体,包括人名(PERSON)、地名(LOCATION)、组织机构名(ORGANIAZATION)以及时间(TIME),构成中文命名实体识别语料库。

5

6 数据标注样式图

1.3.1.3数据划分:

训练集、验证集、测试集以“7:1:2”的比例划分。其中训练集达到49600条的样本数,标注实体共88192个;验证集为7000条,包含12420个标注实体;测试集为14000条,标注实体共25780个。

7

1.3.1.4命名实体识别结果展示:

  • 展示用例:屠呦呦,女,汉族,中共党员,药学家。1930年12月30日生于浙江宁波,1951年考入北京大学,在医学院药学系生药专业学习。1955年,毕业于北京医学院(今北京大学医学部)。

  • 展示用例抽取结果:[['PERSON', '屠呦呦'], ['TIME', '1930年12月30日'], ['LOCATION', '浙江宁波'], ['TIME', '1951年'], ['ORGANIZATION', '北京大学'], ['ORGANIZATION', '医学院药学系'], ['TIME', '1955年'], ['ORGANIZATION', '北京医学院'], ['ORGANIZATION', '北京大学医学部']]

1.3.1.5实验结果:

8

注:实验配置为11G Nvidia RTX2080Ti、Intel(R) Core(TM) i7-8700K CPU @ 3.70GHz、16G内存、2T硬盘

1.3.2结论:

a.实验表明,两者在相同的迭代次数训练后,测试集的F1值上BertNER比NeuroNER高出超过4个百分点。即使NeuroNER迭代epoch增加到100,仍然是BertNER的识别效果更优。
b.Bert NER在训练时长、模型加载速度、预测速度上都占据了很大的优势,达到工业级的水平,更适合应用在生产环境当中。
c.综上所述,Bert-BiLSTM-CRF模型在中文命名实体识别的任务中完成度更高。

1.4 Bert-NER在小数据集下训练的表现:

1.4.1实验数据:

从5万句(250万字)的中文新闻语料中按文本数据的字数(万字为单位)划分出10W、30W、50W的小数据集,同样以“7:1:2”的比例得到对应的训练集、验证集、测试集。

1.4.2命名实体识别结果展示:

  • 展示用例:屠呦呦,女,汉族,中共党员,药学家。1930年12月30日生于浙江宁波,1951年考入北京大学,在医学院药学系生药专业学习。1955年,毕业于北京医学院(今北京大学医学部)。

  • 展示用例抽取结果:[['PERSON', '屠呦呦'], ['TIME', '1930年12月30日'], ['LOCATION', '浙江宁波'], ['TIME', '1951年'], ['ORGANIZATION', '北京大学'], ['ORGANIZATION', '医学院药学'], ['TIME', '1955年'], ['ORGANIZATION', '北京医学院'], ['ORGANIZATION', '北京大学医学部']]

1.4.3实验结果:

在相同实验配置下,四种数据集经过30个epoch的迭代训练,将句子数、训练市场、测试集F1值三个维度的实验结果进行归一化处理后,最终得到以下实验结果图表:

9 实验结果图

  • 效能分析:本文将以10W的数据集实验结果作为基础,探讨在30W、50W和250W三种数据集训练,每当数据量增长一倍(即每增长10W的数据量),所带来的训练时长增长和模型提升比例:

10 效能对比表

1.4.4结论:

1) BertNER在小数据集甚至极小数据集的情况下,测试集F1值均能达到92以上的水平,证明其也能在常见的文本命名实体识别任务中达到同样优秀的效果。
2) 实验结果证明,利用小数据集训练,可以大大降低人工标注成本的同时,训练时长也越少,也将极大地提高模型迭代的能力,有利于更多实体类型的NER模型构建。
3) 经过效能分析可以看出,数据量往上增加的同时,训练时长以相同的比例增加,而F1值提升的幅度在逐渐下降。因此,我们在扩充实体类别的时候,可以参考此效能比例,从而衡量所要投入的资源以及所能达到的模型效果。

二、中文分词和词性标注

2.1综述:

分词:
语言通常是需要用词来描述事物、表达情感、阐述观点等,可是在词法结构上中文与英文有较大的区别。其中最大的不同是英文将词组以空格的形式区分开来,较为容易被自动化抽取出来,而中文的词组往往需要由两个以上的字来组成,则需要通过分词工具来将语句拆分,以便进一步分析内容和意图。

词性标注:
对分词后的单词在用法上进行分类,为句法分析、信息抽取等工作打下基础。常见的词性包括名词、动词、形容词、代词、副词等。

2.2 分词和词性标注工具对比:

分词和词性标注往往是一同完成的。本文选取了主流的四款中文自然语言处理工具包括:
Jieba、Pyltp、PkuSeg、 THULAC 。

11

对比测试了它们分词和词性标注上的效果、速度、功能以及集成程度等。其中速度方面的测试,使用了百度百科上100位科技人物的首句人物介绍,经过预测得到每句文本的平均计算。

注:实验配置为11G Nvidia RTX2080Ti、Intel(R) Core(TM) i7-8700K CPU @ 3.70GHz、16G内存、2T硬盘

2.2.1测试文本:

12

2.2.2效果对比:

  • Jieba:

13

注:v(动词)、e(叹词)、b(区别词)、n(名词)、ns(地名)、nz(其他专名)、q(量词)、m(数词)、x(非语素字)

  • Pyltp:

14

注:nh(人名)、n(名词)、ns(地名)、nt(时间名词)、nz(其他专名)、b(区别词)、wp(标点符号)

  • PkuSeg:

15

注:nr(人名)、ns(地名)、nz(其他专名)、t(时间词)、b(区别词)、j(简称)、w(标点符号)

  • THULAC:

16

注:g(语素词根)、ns(地名)、nz(其他专名)、t(时间词)、a(形容词)、j(简称)、w(标点符号)

  • Jieba分词 + Bert-NER + Pyltp词性标注:

17

注:nh(人名)、n(名词)、ns(地名)、nt(时间名词)、nz(其他专名)、b(区别词)、wp(标点符号)

2.3结论:

a. 经过NER、分词、词性标注的对比测试后发现,Jieba分词同时具有速度快和支持用户自定义词典的两大优点,Pyltp具有单独使用词性标注的灵活性。因此,使用“Jieba分词 + BertNER作自定义词典 + Pyltp词性标注”的组合策略后,可以弥补Jieba分词在实体识别的缺点,保证较高的准确率和产品速度。

b. PkuSeg和THULAC:初始化模型就需要很长时间,导致分词和词性标注的模型预测速度慢,同时部分人名的命名实体识别有所缺失。

c. Pyltp:分词效果太过于细化,而且实际上是无法用到用户自定义词典的。因为LTP的分词模块并非采用词典匹配的策略,而是外部词典以特征方式加入机器学习算法当中,并不能保证所有的词都是按照词典里的方式进行切分。

三、中文指代消解

3.1综述:

指代消解(Coreference Resolution),即在文本中确定代词指向哪个名词短语,解决多个指称对应同一实体对象的问题。

常见用于实现指代消解的工具包:NeuralCoref、Stanford coreNLP、AllenNLP等。

大部分工具包都是基于语义结构中的词和句的规则来实现指代消解,而且都是在英文的语言结构当中实现了不错的效果,NeuralCoref和AllenNLP不支持中文,而Stanford coreNLP 是具有多种语言模型,其中包括了中文模型,但Stanford coreNLP 的指代消解在中文的表现并不理想。目前而言,基于深度学习的端到端指代消解模型还达不到生产应用的要求。

3.2基于Stanford coreNLP的指代消解模型:

3.2.1系统架构:
运用Stanford coreNLP中文模型的词性标注、实体识别和句法依存功能模块+规则来构成一个中文指代消解系统。

3.2.2输入:

18

3.2.3结果:

19

主语"屠呦呦"被拆分为两个元素,这也直接导致了主语识别成了呦呦。最后的结果为:

20

3.3基于BertNER的中文指代消解框架:

本文选取Pyltp中文工具包中的依存句法分析模块,结合“Jieba分词 + BertNER作自定义词典 + Pyltp词性标注”的词性标注和BertNER实体识别模块,以确定输入文本段落的主语和实体,从而将文本中出现的代词指代到对应的实体上。并且还实现了对缺失主语的部分文本进行主语补齐。

3.3.1实验结果:

21

3.3.2经过反复的实验表明,基于BertNER的中文指代消解框架比基于Stanford coreNLP的指代消解模型在中文上获得更高的准确率和更好的效果,同时实现了主语补齐的功能,有助于抽取更多的有用三元组信息。

四、中文信息抽取系统

以下是基于Bert-NER的中文信息抽取系统的最终实验结果。

4.1中文信息抽取框架测试结果:

目前的规则配置文档定义了五类关系:出生于,配偶,毕业于,工作在,父(母)子。

4.1.1基于80条百度百科人物介绍,使用StanfordCoreNLP提取三元组的效果如下图所示。五类的关系抽取三元组准确率为0.89,抽取率达到0.69。

22

4.1.2基于80条百度百科人物介绍,使用本文中文抽取模型,取得较为明显的改进,五类的关系抽取三元组准确率达到0.99,抽取率达到0.96。

23

4.1.3测试用例结果展示:

24

本文实验代码:

中文命名实体识别:https://github.com/EOA-AILab/NER-Chinese

中文分词与词性标注:https://github.com/EOA-AILab/Seg_Pos


阅读过本文的人还看了以下文章:

【全套视频课】最全的目标检测算法系列讲解,通俗易懂!

《美团机器学习实践》_美团算法团队.pdf

《深度学习入门:基于Python的理论与实现》高清中文PDF+源码

python就业班学习视频,从入门到实战项目

2019最新《PyTorch自然语言处理》英、中文版PDF+源码

《21个项目玩转深度学习:基于TensorFlow的实践详解》完整版PDF+附书代码

《深度学习之pytorch》pdf+附书源码

PyTorch深度学习快速实战入门《pytorch-handbook》

【下载】豆瓣评分8.1,《机器学习实战:基于Scikit-Learn和TensorFlow》

《Python数据分析与挖掘实战》PDF+完整源码

汽车行业完整知识图谱项目实战视频(全23课)

李沐大神开源《动手学深度学习》,加州伯克利深度学习(2019春)教材

笔记、代码清晰易懂!李航《统计学习方法》最新资源全套!

《神经网络与深度学习》最新2018版中英PDF+源码

将机器学习模型部署为REST API

FashionAI服装属性标签图像识别Top1-5方案分享

重要开源!CNN-RNN-CTC 实现手写汉字识别

yolo3 检测出图像中的不规则汉字

同样是机器学习算法工程师,你的面试为什么过不了?

前海征信大数据算法:风险概率预测

【Keras】完整实现‘交通标志’分类、‘票据’分类两个项目,让你掌握深度学习图像分类

VGG16迁移学习,实现医学图像识别分类工程项目

特征工程(一)

特征工程(二) :文本数据的展开、过滤和分块

特征工程(三):特征缩放,从词袋到 TF-IDF

特征工程(四): 类别特征

特征工程(五): PCA 降维

特征工程(六): 非线性特征提取和模型堆叠

特征工程(七):图像特征提取和深度学习

如何利用全新的决策树集成级联结构gcForest做特征工程并打分?

Machine Learning Yearning 中文翻译稿

蚂蚁金服2018秋招-算法工程师(共四面)通过

全球AI挑战-场景分类的比赛源码(多模型融合)

斯坦福CS230官方指南:CNN、RNN及使用技巧速查(打印收藏)

python+flask搭建CNN在线识别手写中文网站

中科院Kaggle全球文本匹配竞赛华人第1名团队-深度学习与特征工程

不断更新资源

深度学习、机器学习、数据分析、python

 搜索公众号添加: datayx  

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值