K-means和KNN

本文介绍了两种常见的机器学习算法——KMeans聚类和KNN分类。KMeans是一种无监督学习方法,通过迭代寻找样本的最佳聚类;KNN则是有监督学习,依赖于邻居数据的比例来决定分类。文章强调了K值选择的重要性,K值影响聚类和分类的效果,并提供了使用sklearn实现KNN的例子。评估KMeans效果的指标是轮廓系数,范围在-1到1之间,值越接近1表明聚类效果越好。
摘要由CSDN通过智能技术生成

        Kmeans是一种无监督聚类算法。简单理解就是对于样本集选取k个中心点,迭代出每个点距离k个重点的距离,然后分配到离其最近的簇中。需要确定合适的k值,k值太大会导致模型过拟合,k值太小会导致模型欠拟合。

评价标准主要是看轮廓系数S(S∈[-1,1]),越接近1,则聚类效果越好。越接近-1则聚类效果越不好。

S=(b-a)/max(a,b)

a为样本点到同一簇其他点的平均距离。b为样本点到不为同一个簇的其他点的平均距离

简单的K-means实现

        KNN是一种有监督分类算法。简单理解就是根据周围数据比例来判断自己类别。拿下图举例,假设虚线此时K=3,实现此时K=5。当K=3时,红色比蓝色为2:3,所以绿色会被认定为蓝色类。当K=5时,红色比蓝色为6:4,所以绿色将会被认定为红色类。

 这也说明K取值不同对于实验数据影响十分大。

利用sklearn库中自带的鸢尾花数据实现KNN过程

 

 

         

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值