1) 常微分方程
自变量只有一个的微分方程,称为常微分方程;自变量数量2个或以上时,称为偏微分方程。
绝大多数实际工程问题,常微分方程的自变量都是时间 ,通常表达为:
2) 一阶常微分方程
一阶常微分方程是指只包含因变量一阶导数的微分方程, 高阶微分方程可以通过转换变成向量形式的一阶常微分方程。如求解上述关于 的隐式方程,得到 的显式表达式为:
写成向量形式:
令:
得到向量形式的一阶常微分方程:
3) 微分方程的解析解法和数值解法
微分方程的求解方法有解析解法和数值解法,解析法是求出因变量关于时间 的具体函数式,表达为
;数值法是解出因变量
关于时间
的离散序列,通常表达为
离散数据对。绝大多数的非线性常微分方程,不存在或难以求出解析解,大多数情况下只能求取微分方程的数值解。
2. 算法
欧拉法(Euler)是求解一阶常微分方程初值问题的数值方法,分为显式欧拉法、隐式欧拉法、两步欧拉法和改进欧拉法。
2.1 显式欧拉法
一阶微分方程初值问题:
式中, 为初始时间(已知常数), 为初始状态(已知向量),
为关于时间
和状态 的函数(已知函数)。
使用一阶向前差商代替微分,即:
式中, 为时间步长。
微分方程变为显式差分方程:
上式是关于 向 的递推形式,可以根据初始条件按照递推关系依次求