matlab建模学习心得

1) 常微分方程

自变量只有一个的微分方程,称为常微分方程;自变量数量2个或以上时,称为偏微分方程。

绝大多数实际工程问题,常微分方程的自变量都是时间  ,通常表达为: [公式]

2) 一阶常微分方程

一阶常微分方程是指只包含因变量一阶导数的微分方程, 高阶微分方程可以通过转换变成向量形式的一阶常微分方程。如求解上述关于  的隐式方程,得到 [公式] 的显式表达式为: [公式]

写成向量形式: 

令: 

得到向量形式的一阶常微分方程: 

3) 微分方程的解析解法和数值解法

微分方程的求解方法有解析解法和数值解法,解析法是求出因变量关于时间 [公式] 的具体函数式,表达为 [公式] ;数值法是解出因变量 [公式] 关于时间 [公式] 的离散序列,通常表达为 [公式] 离散数据对。绝大多数的非线性常微分方程,不存在或难以求出解析解,大多数情况下只能求取微分方程的数值解。

2. 算法

欧拉法(Euler)是求解一阶常微分方程初值问题的数值方法分为显式欧拉法、隐式欧拉法、两步欧拉法和改进欧拉法。

2.1 显式欧拉法

一阶微分方程初值问题: 

式中,  为初始时间(已知常数), [公式] 为初始状态(已知向量), [公式] 为关于时间

 和状态 [公式] 的函数(已知函数)。

使用一阶向前差商代替微分,即: 

式中,  为时间步长。

微分方程变为显式差分方程: 

上式是关于  向 [公式] 的递推形式,可以根据初始条件按照递推关系依次求

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值