一、开环(前馈)控制方式与闭环(反馈)控制方式
我们把控制方式分为两个大类:开环控制方式和闭环控制方式。开环控制方式(也被称为前馈控制方式)的特点是系统的输入量不会对系统的控制作用发生影响。举个例子,踢足球就是一个开环控制方式。只要足球一被踢出去,我们对足球的运动轨迹就不再产生影响。开环控制方式结构简单、调整方便、成本低,在精度不高或扰动影响较小的情况下,这种控制方式还有一定的实用价值。自动售货机、自动洗衣机、产品生产自动线、数控车床以及指挥交通的红绿灯转换等一般都是开环控制系统。
在自动控制原理这门课中,我们将更加关注闭环控制方式。在闭环控制系统中(也被称为反馈控制方式),控制装置对被控对象施加的控制作用,是取自被控量的反馈信息,用来不断修正被控量与输入量之间的偏差,从而实现对被控对象进行控制的任务。人的很多活动都体现出反馈控制的原理,人本身就是一个具有高度复杂控制能力的反馈控制系统。例如,人用手拿取桌上的书、汽车司机操纵方向盘驾驶汽车沿公路平稳行驶等,这些日常生活中习以为常的动作都渗透着反馈控制的深奥原理。
二、离散控制系统与连续控制系统
在上一节中,自动控制系统按控制方式可以分为开环控制和闭环控制。在这一节中,我们按系统性能分为离散(DT)控制系统和连续(CT)控制系统。
连续(CT)控制系统:这类系统可以用线性微分方程式描述。这里我们用3D打印机来举例:假设我们想控制3D打印机喷头的温度,当温度高时,材料融化;当温度低时,打印停止。我们画出最简单的方框图如下,这个系统包括喷头、控制器和传感器。其中输入 Td(t) 为我们需要的喷头温度,输出 Tm(t) 是目前测量的喷头温度。
输出 Tm(t) 的温度信号是连续信号,因此该问题也被称为连续控制问题。
大部分系统由数字控制器控制,其采样频率固定(kHz 到 GHz)。通过离散化后,输入信号和输出信号全部变为 “分段函数” ,如下图所示。从图像上看离散(DT)控制系统与连续(CT)控制系统产生结果大致相近。
为了便于分析,我们把连续变量 “t” 换成 离散索引 “n” 。这个系统就由 “微分方程” 表示变成由 “差分方程” 表示。
三、方框图和控制核心问题
方框图是分析控制的一个重要方法,它包含一些方框和信号线,能够展示控制系统的基本组成和工作原理。我们首先绘制最简单的开环控制系统方框图:
这是一个开环系统,因为输出没有用来更新输入。
我们再来绘制闭环控制系统的方框图。这里包含很多信号:输入信号 Td[n] 、输出信号 Tm[n] 、偏差信号 e[n] 、控制信号 u[n] 。
我们通过设计控制器模块使得在大部分情况下,输入信号与输出信号相似(甚至相同)。设计控制器时,我们要考虑如下问题:
- 稳定性:系统的输入是否为无穷?
- 系统的稳态误差
是什么?
- 收敛速度:
靠近
的速度有多快?
- 抗扰:控制器对外部干扰的处理有多好?
四、一阶系统和比例控制
当控制器、被控对象等硬件组成的系统可以用一阶微分方程表示时,我们称该系统为一阶系统。我们继续拿前几节的3D打印机举例。描述加热喷头的方程为
这是一个一阶微分方程,它表示温度的变化率与控制器的输入信号成比例。由于系统由数字控制器控制,我们采用离散系统:
由于这个方程只包含 n 和 n-1 时刻,该方程称为一阶差分方程。
在绝大部分情况下,我们无法改变被控对象,但我们可以设计控制器。于是我们的目的就变成如何设置 u[n] 。这里我们将使用具有比例控制规律的控制器(P控制器),该控制器的原理为:
我们找到一个合适的运行点,在该点处输入与偏差成比例。如果偏差不为零,我们希望该系统可以校正误差;如果偏差为零,控制信号 u[n] 也为零。这个控制器可以减小系统的稳态误差,提高系统的控制精度。至于如何选择 Kp 详见下回分解。