HDU 6033 Add More Zero (数学)

Description

There is a youngster known for amateur propositions concerning several mathematical hard problems. 

Nowadays, he is preparing a thought-provoking problem on a specific type of supercomputer which has ability to support calculations of integers between  00 and (2m1)(2m−1) (inclusive). 

As a young man born with ten fingers, he loves the powers of 1010 so much, which results in his eccentricity that he always ranges integers he would like to use from 11 to 10k10k (inclusive). 

For the sake of processing, all integers he would use possibly in this interesting problem ought to be as computable as this supercomputer could. 

Given the positive integer m, your task is to determine maximum possible integer k that is suitable for the specific supercomputer.
 

Input

The input contains multiple test cases. Each test case in one line contains only one positive integer  mm, satisfying 1m1051≤m≤105.
 

Output

For each test case, output "  Case #xx: yy" in one line (without quotes), where  xx indicates the case number starting from 11 and yy denotes the answer of corresponding case.
 
Sample
Sample Input
1
64 
 
Sample Output
Case #1: 0
Case #2: 19 

 

题意:

  给出10^k ≥ 2^m -1,求k的最大整数

思路:

  令10^k = 2^m 两边取对数,得 k = m*log10(2)的整数部分。

代码

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
#include<math.h>
using namespace std;
int main()
{
    int flag = 1,n;
    while(scanf("%d",&n)!=EOF)
    {
        int ans= (n*log10(2));
        printf("Case #%d: %d\n",flag++,ans);
    }
    return 0;
}

 

转载于:https://www.cnblogs.com/aiguona/p/7260220.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值