聚类算法(三)——基于密度的聚类算法(以 DBSCAN 为例)

本文介绍了基于密度的聚类算法DBSCAN,详细阐述了DBSCAN算法的工作原理、参数设置、优缺点,并通过Python代码展示了不同eps值下的聚类效果。此外,还探讨了DBSCAN在数据密度不均匀时的挑战以及相应的优化方法,如OPTICS和DP算法。
摘要由CSDN通过智能技术生成

      上一篇博客提到 K-kmeans 算法存在好几个缺陷,其中之一就是该算法无法聚类哪些非凸的数据集,也就是说,K-means 聚类的形状一般只能是球状的,不能推广到任意的形状。本文介绍一种基于密度的聚类方法,可以聚类任意的形状。

      基于密度的聚类是根据样本的密度分布来进行聚类。通常情况下,密度聚类从样本密度的角度出来,来考查样本之间的可连接性,并基于可连接样本不断扩展聚类簇,以获得最终的聚类结果。其中最著名的算法就是 DBSCAN 算法

DBSCAN 算法有两个参数:半径 eps 和密度阈值 MinPts,具体步骤为:

1、以每一个数据点 xi 为圆心,以 eps 为半径画一个圆圈。这个圆圈被称为 xi 的 eps 邻域

2、对这个圆圈内包含的点进行计数。如果一个圆圈里面的点的数目超过了密度阈值 MinPts,那么将该圆圈的圆心记为核心点,又称核心对象。如果某个点的 eps 邻域内点的个数小于密度阈值但是落在核心点的邻域内,则称该点为边界点。既不是核心点也不是边界点的点,就是噪声点。

3、核心点 xi 的 eps 邻域内的所有的点,都是 xi 的直接密度直达。如果 xj 由 xi 密度直达,xk 由 xj 密度直达。。。xn 由 xk 密度直达,那么,xn 由 xi 密度可达。这个性质说明了由密度直达的传递性,可以推导出密度可达。

4、如果对于 xk,使 xi 和 xj 都可以由 xk 密度可达,那么,就称 xi 和 xj 密度相连。将密度相连的点连接在一起,就形成了我们的聚类簇。

 

      用更通俗易懂的话描述就是如果一个点的 eps 邻域内

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值