Python 机器学习实战:根据成绩预测大学生能否被高校录取

      逻辑回归算法是用于分类的。本案例中,建立一个逻辑回归模型来预测一个学生是否被大学录取。假设你是一个大学系的管理员,你想根据两次考试的结果来决定每个申请人的录取机会。你有以前的申请人的历史数据,你可以用它作为逻辑回归的训练集。对于每一个培训例子,你有两个考试的申请人的分数和录取决定。为了做到这一点,我们将建立一个分类模型,根据考试成绩估计入学概率。

      1、首先,导入库,并且读取数据集。原来数据集是 .txt 结尾的。

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

import os
path =  'LogiReg_data.txt'
pdData = pd.read_csv(path, header=None, names=['Exam 1', 'Exam 2', 'Admitted'])

由于原始数据中并没有给出每一列的列的名字,所以,我们自己加一个 “Exam 1”、"“Exam 2”、"Admitted",我们最好列举前几行数据,确认一下是否读入了数据,并且,看一下数据的维度:

pdData.head()
pdData.shape

显示结果如下:


      2、将数据分成正负样本,利用散点图,大致看一下数据分布(不是必要步骤,而且因为数据只有两个维度,才添加了此步骤)

positive = pdData[pdData['Admitted'] == 1] 
negative = pdData[pdData['Admitted'] == 0] 

fig, ax = plt.subplots(figsize=(10,5))
ax.scatter(positive['Exam 1'], positive['Exam 2'], s=30, c='b', marker='o', label='Admitted')
ax.scatter(negative['Exam 1'], negative['Exam 2'], s=30, c='r', marker='x', label='Not Admitted')
ax.legend()
ax.set_xlabel('Exam 1 Score')
ax.set_ylabel('Exam 2 Score')

补充说明一下:Admitted 是标签,当标签为 1 时,认为是正样本;标签为 0 时,认为是负样本。而 pd Data['Admitted'] == 1,是一堆 True 和 false。散点图的显示效果如下所示:


      3、逻辑回归

      此部分,我们主要建立一个分类器:也就是求解 theta 值。然后设定阈值,根据阈值,判断是否被录取。主要步骤如下:

      (1)、定义 sigmoid 函数

def sigmoid(z):
    return 1 / (1 + np.exp(-z))

      sigmoid 函数是将预测值(比如线性回归中的结果),映射为概率的一个函数。形式为:


其中,自变量 z 为任意值,而 g(z) 的值域为 (0,1),(0,1)也就是对应着概率的大小。曲线图如下:


      (2)定义模型,也就是预测函数

 

def model(X, theta):
    return sigmoid(np.dot(X, theta.T))

  

      将 sigmoid () 函数的自变量 z 变成上式。其中,X 是样本数据,它的每一行都是一个样本,每一列为样本的某一个特征。theta 表示参数,它是我们通过学习获得的,其中,对于每一个特征,都对应一个 theta ,即


其中,为偏置项,因此,要在原始数据上补上一列,值为 1 ,是为了形式上的统一,方便矩阵运算,

pdData.insert(0, 'Ones', 1) # 在第 0 列,插入一列,名称为"Onces",数值全为 1


# set X (training data) and y (target variable)
orig_data = pdData.as_matrix() # convert the Pandas representation of the data to an array useful for further computations
cols = orig_data.shape[1]
X = orig_data[:,0:cols-1]
y = orig_data[:,cols-1:cols]

theta = np.zeros([1, 3])  # 初始化theta 

      (3) 定义损失函数

      损失函数是将对数似然函数,乘以一个负号。乘以负号是为了将求解梯度上升转换为求解梯度下降,

   

      这是整体的一个损失,但是,不同的样本量,总损失肯定是不同的,因此,为了确定一个统一标准,使用平均损失,即将总损失除以样本个数,


def cost(X, y, theta):
    left = np.multiply(-y, np.log(model(X, theta)))
    right = np.multiply(1 - y, np.log(1 - model(X, theta)))
    return np.sum(left - right) / (len(X))

初始的损失值,我们可以计算出来,

cost(X, y, theta)

结果为:0.69314718055994529

      (4)梯度的计算与参数的更新

      计算梯度的目的是寻找极值,确定损失函数如何进行优化,使损失函数的值越来越小。

  

参数的更新策略为:

     

 我们需要通过迭代来计算梯度,然后,梯度的计算什么时候停止呢?这里有三种停止策略:

1、设置固定的迭代次数

2、设置损失函数的阈值,当达到一定阈值时,就停止迭代。

3、通过梯度的变化率来判断:设置前后两次梯度相差的阈值,如果小于该阈值,停止迭代。

相关代码如下:

STOP_ITER = 0
STOP_COST = 1
STOP_GRAD = 2

def stopCriterion(type, value, threshold):
    #设定三种不同的停止策略
    if type == STOP_ITER:        return value > threshold
    elif type == STOP_COST:      return abs(value[-1]-value[-2]) < threshold
    elif type == STOP_GRAD:      return np.linalg.norm(value) < threshold

import numpy.random
#洗牌
def shuffleData(data):
    np.random.shuffle(data)
    cols = data.shape[1]
    X = data[:, 0:cols-1]
    y = data[:, cols-1:]
    return X, y

import time

def descent(data, theta, batchSize, stopType, thresh, alpha):
    #梯度下降求解
    
    init_time = time.time()
    i = 0 # 迭代次数
    k = 0 # batch
    X, y = shuffleData(data)
    grad = np.zeros(theta.shape) # 计算的梯度
    costs = [cost(X, y, theta)] # 损失值

    while True:
        grad = gradient(X[k:k+batchSize], y[k:k+batchSize], theta)
        k += batchSize  #取batch数量个数据
        if k >= n:    # 这个 n 是在运行的时候指定的,为样本的个数
            k = 0 
            X, y = shuffleData(data) #重新洗牌
        theta = theta - alpha*grad # 参数更新
        costs.append(cost(X, y, theta)) # 计算新的损失
        i += 1 

        if stopType == STOP_ITER:       value = i
        elif stopType == STOP_COST:     value = costs
        elif stopType == STOP_GRAD:     value = grad
        if stopCriterion(stopType, value, thresh): break
    
    return theta, i-1, costs, grad, time.time() - init_time

def run(data, theta, batchSize, stopType, thresh, alpha):
    #import pdb; pdb.set_trace();
    theta, iter, costs, grad, dur = descent(data, theta, batchSize, stopType, thresh, alpha)
    fig, ax = plt.subplots(figsize=(12,4))
    ax.plot(np.arange(len(costs)), costs, 'r')
    ax.set_xlabel('Iterations')
    ax.set_ylabel('Cost')
    ax.set_title(name.upper() + ' - Error vs. Iteration')
    return theta

这样,就可以运行结果了。运行的类型有很多种,首先,终止迭代的方式有三种,而选择样本的方式同样有三种:(1)批量梯度下降,也就是一下子考虑所有的样本,这样的话,速度慢,但是容易得到最优解;(2)随机梯度下降,每次只利用一个样本,这样的方式迭代速度很快,不过难以保证每次的迭代都是朝着收敛的方向;(3)小批量梯度下降,即 mini-batch ,每次更新选择一小部分,比如 16个样本,32 个样本等等,这样的方式很实用,但应该先对数据进行洗牌,打乱顺序。

先运行一下:

run(orig_data, theta, n, STOP_GRAD, thresh=0.005, alpha=0.001)

结果如下:


如果采用随机梯度下降(每次只使用一个样本),或者小批量梯度下降(每次采用 mini-batch),会产生如下的效果——波动太大

run(orig_data, theta, 1, STOP_ITER, thresh=5000, alpha=0.001)



有至少两种解决方案:

(1)将学习率调小一点,情况肯定会有所改善

(2)对数据去均值化。将数据按其属性(按列进行)减去其均值,然后除以其方差。最后得到的结果是,对每个属性/每列来说所有数据都聚集在0附近,方差值为1。

from sklearn import preprocessing as pp

scaled_data = orig_data.copy()
scaled_data[:, 1:3] = pp.scale(orig_data[:, 1:3])

      最终的结果是:波动不再明显,并且收敛速度加快,最终获得的损失函数的值会更小。不再一一列举实验


      4、精度判断

      我们训练好的模型到底好不好用,测试结果来说话:

#设定阈值
def predict(X, theta):
    return [1 if x >= 0.5 else 0 for x in model(X, theta)]
scaled_X = scaled_data[:, :3]
y = scaled_data[:, 3]
predictions = predict(scaled_X, theta)
correct = [1 if ((a == 1 and b == 1) or (a == 0 and b == 0)) else 0 for (a, b) in zip(predictions, y)]
accuracy = (sum(map(int, correct)) % len(correct))
print ('accuracy = {0}%'.format(accuracy))

最后结果为 92 %。当然了,这个结果是可以改善了,如果迭代的次数更多,这个精度会更高。

©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页