数字信号处理
denghe1122
不知道你身边有没有这样一种人,明明已经百里挑一,还觉得基数太小;明明已经出类拔萃,还觉得炮灰太少。每天像缺钱一样勤奋,像欠债一样努力。每每遇到这样的人,我都会问一句:为什么?
展开
-
图像的傅里叶变换与图像的能量分布——再探
有这样一段话,刚开始不好理解:根据傅里叶变换理论原创 2017-12-26 20:24:18 · 17998 阅读 · 3 评论 -
信号处理中,为什么要引入复数
最近做相关滤波跟踪遇到了瓶颈,所以想重新把基础知识梳理一遍。 看了不少解释,我的理解是,在信号处理中采用复信号表示法主要是为了数学处理的方便,因为若采用实信号表示法,当对信号进行处理时,将会产生大量的“交叉项”,这会给系统的分析带来一定的复杂性,而这个问题通过采用复信号表示法可以得到减轻,而且由于复信号的实部和虚部正好与接收机中的同相支路(I)和正交支路(Q)相对应,所以在系统中采用原创 2017-12-20 22:04:11 · 15173 阅读 · 1 评论 -
复数的物理意义
本文参考链接:https://www.zhihu.com/question/23234701/answer/26017000https://zhuanlan.zhihu.com/wille/19763358http://blog.sina.com.cn/s/blog_5dfd405d0101iyq7.htmlhttp://blog.163.com/lipan465@126/转载 2017-12-20 21:13:34 · 14286 阅读 · 4 评论 -
数字信号处理——卷积
形象的解释: 就常识上来讲,系统的响应,不仅与当前时刻系统的输入有关,还有之前的若干输入有关。也就是说,每一个输入信号都会对输出值产生影响,但影响的程度不尽相同,而这个影响程度的大小,就是权值,也就是卷积核(图像处理中,称之为卷积滤波器)。将每一个输入信号乘以权值,然后叠加,就得到了最后的输出响应。 在现实生活中,卷积是有诸多种意义的,比如增加、合成或者旋转等。不用去深原创 2017-12-19 20:09:53 · 12605 阅读 · 0 评论 -
自相关函数与互相关函数
1、概念 相关函数是描述信号X(s),Y(t)(这两个信号可以是随机的,也可以是确定的)在任意两个不同时刻s、t的取值之间的相关程度。两个信号之间的相似性大小用相关系数来衡量。定义: 称为变量 X 和 Y 的相关系数。若相关系数 = 0,则称 X与Y 不相关。相关系数越大,相关性越大,但肯定小于或者等于1.。相关函数分为自相关和互相关。下面一一介绍(1)原创 2017-12-19 22:16:01 · 111211 阅读 · 5 评论 -
由浅入深理解傅里叶—— 看完你还不懂的话,你可以回来掐死我(原作者说的,要掐掐死他)
最近,一直在研究视觉追踪图像处理,其中傅里叶变换是非常重要的一环。单单只是会使用OpenCV里面的库函数,感觉是远远不够的,所以对傅里叶变换进行了研究。无意间发现了原来作者的一篇技术博客,看完以后,醍醐灌顶。在此给大家分享一下。我主要修改了两个地方:1)文章中卖萌的语句,我给删除了,可能是我欣赏不来。2)文章中一些动图,我给做了显示。 原文链接如下:https://zhuanlan.转载 2017-09-26 19:59:51 · 1930 阅读 · 0 评论 -
傅里叶变换推导
http://blog.csdn.net/linmingan/article/details/51194187注:文章中有一两处公式错误,(1)辅助角公式中求幅值应该是平方开根号,(2)sin()函数的欧拉表示公式中,应该是除以2i。本文参考的博客[1]:http://www.360doc.com/content/13原创 2017-11-13 17:36:25 · 1853 阅读 · 0 评论 -
目标追踪算法——KCF数学推导
这篇博客只是记录下本人学习KCF算法数学推导的过程,方便以后查看,内容来源于论文和博客(见:Reference)原文:http://blog.csdn.net/zengdong_1991/article/details/61429376Reference[2015 P原创 2017-10-30 21:05:19 · 2487 阅读 · 1 评论