数据预测算法-指数平滑法-1

本文介绍了三次指数平滑法,一种适用于包含趋势和季节性的时间序列预测算法。通过一次、二次到三次平滑的递进,算法能够保留趋势和季节性信息。文中以国际航线乘客数数据为例,比较了累加和累乘方法的预测效果,展示了指数平滑法在实际问题中的应用。
摘要由CSDN通过智能技术生成

在时间序列中,我们需要基于该时间序列当前已有的数据来预测其在之后的走势,三次指数平滑(Triple/Three Order Exponential Smoothing,Holt-Winters)算法可以很好的进行时间序列的预测。

时间序列数据一般有以下几种特点:1.趋势(Trend) 2. 季节性(Seasonality)。

趋势描述的是时间序列的整体走势,比如总体上升或者总体下降。下图所示的时间序列是总体上升的:

1536549-20181129145812113-1469970929.png

季节性描述的是数据的周期性波动,比如以年或者周为周期,如下图:
1536549-20181129145817207-651441623.png

三次指数平滑算法可以对同时含有趋势和季节性的时间序列进行预测,该算法是基于一次指数平滑和二次指数平滑算法的。

一次指数平滑算法基于以下的递推关系:

si=αxi+(1-α)si-1

其中α是平滑参数,si是之前i个数据的平滑值,取值为[0,1],α越接近1,平滑后的值越接近当前时间的数据值,数据越不平滑,α越接近0,平滑后的值越接近前i个数据的平

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值