AtCoder Grand Contest 036D - Negative Cycle

11 篇文章 0 订阅
2 篇文章 0 订阅

神仙题?反正我是完全想不到哇QAQ
这场AGC真的很难咧 × 10086 \times 10086 ×10086

D e s c r i p t i o n \bf Description Description

一张 n n n 个点的图, i i i i + 1 i+1 i+1 有连边。
现在来了个Snuke,他会给所有 ( i , j ) , i ≠ j (i,j) ,i ≠ j (i,j),i̸=j 连边(我也不知道为什么这个不等号会变成这样),如果 i &lt; j i&lt;j i<j ,边权为 − 1 -1 1 ,否则为 1 1 1
然鹅Ringo不想要图里有负环,所以他会删去Snuke加的一些边,使得图中没有负环,删除一条边有个代价,问最小的删边代价。 3 ≤ n ≤ 500 3 \leq n \leq 500 3n500

S o l u t i o n \bf Solution Solution

(官方题解是从 0 0 0 标号的,我是从 1 1 1 标号的,所以有一点点不一样)
对于一个没有负环的图,我们可以弄出这样一个数组 p p p 满足

  • 对于任意 i i i j j j 的边,满足 p j ≤ p i + w e i g h t ( i , j ) p_j \leq p_i + weight(i,j) pjpi+weight(i,j),(weight是权值,不是代价)

显然这个 p i p_i pi 是存在的,比如说是 1 1 1 i i i 的最短路。
然后令 q i = p i − p i + 1 q_i=p_i-p_{i+1} qi=pipi+1 ,于是

  • 对于一条 i → j ( i &gt; j ) i → j (i&gt;j) ij(i>j) 的边,必须满足 p j ≤ p i + 1 p_j \leq p_i+1 pjpi+1,即 q j + q j + 1 + ⋯ + q i − 1 ≤ 1 q_j+q_{j+1}+ \cdots + q_{i-1} \leq 1 qj+qj+1++qi11
  • 对于一条 i → j ( i &lt; j ) i → j (i&lt;j) ij(i<j) 的边,必须满足 p j ≤ p i − 1 p_j \leq p_i-1 pjpi1,即 q i + q i + 1 + ⋯ + q j − 1 ≥ 1 q_i+q_{i+1}+ \cdots + q_{j-1} \geq 1 qi+qi+1++qj11

可以发现只用考虑 0 ≤ q i ≤ 1 0 \leq q_i \leq 1 0qi1的情况 。

现在问题就简单了,对于一个 q q q ,只要把不符合上述条件的边都删掉就行。

f [ i ] [ j ] f[i][j] f[i][j] 长度为 j j j 的数组里最后一个 1 1 1 j j j ,倒数第二个在 i i i ,的最小删边代价。(和官方题解是反的)
当我们从 f [ i ] [ j ] f[i][j] f[i][j] 转移到 f [ j ] [ k ] f[j][k] f[j][k] 时,要删去这样两种边:

  • b → a   ( b &gt; a ) , i &lt; a ≤ j , b &gt; k b → a \ (b&gt;a), i&lt;a \leq j, b&gt;k ba (b>a),i<aj,b>k (因为 b b b a a a 有两个 1 1 1 了所以就不行)
  • a → b , j &lt; a &lt; b ≤ k a → b, j&lt;a&lt;b \leq k ab,j<a<bk (因为 a a a b b b 没有 1 1 1 了所以就不行)

用前缀和就可以 O ( 1 ) O(1) O(1) 转移啦。
时间复杂度 O ( n 3 ) O(n^3) O(n3)

具体实现的话,用 w [ i ] [ j ] w[i][j] w[i][j] 表示 1 ≤ a ≤ i , j ≤ b ≤ n 1 \leq a \leq i , j \leq b \leq n 1ai,jbn ,所有 b → a b → a ba 边的权值和
v v [ i ] [ j ] vv[i][j] vv[i][j] 表示 i ≤ a &lt; b ≤ j i \leq a &lt; b \leq j ia<bj ,所有 a → b a → b ab 边的权值和。
预处理一下就可以转移了。

q 0 q_0 q0 q n + 1 q_{n+1} qn+1 强制为 1 1 1 可以省去对边界的特判。

#include<bits/stdc++.h>
#define LL long long
#define fr(i,x,y) for(int i=(x);i<=(y);i++)
#define rf(i,x,y) for(int i=(x);i>=(y);i--)
#define frl(i,x,y) for(int i=(x);i<(y);i++)
using namespace std;
const int N=505;
const int p=998244353;
int n;
int a[N][N];
LL w[N][N],vv[N][N];
LL f[N][N];

void read(int &x){ scanf("%d",&x); }
void read(LL &x){ scanf("%lld",&x); }

LL vwv(int a,int b,int c){
	return w[b][c]-w[a-1][c];
}

void chkmin(LL &x,LL y){
	if (y<x) x=y;
}

int main(){
	read(n);
	fr(i,1,n)
	 fr(j,1,n)
	  if (i!=j) read(a[i][j]);
	fr(i,1,n)
	 rf(j,n,i+1){
	 	w[i][j]=w[i][j+1];
	 	fr(k,1,i) w[i][j]+=a[j][k];
	 }
	fr(i,1,n)
	 fr(j,i+1,n+1){
	 	vv[i][j]=vv[i][j-1];
	 	fr(k,i,j-1) vv[i][j]+=a[k][j];
	 }
	memset(f,0x3f,sizeof f);
	f[0][0]=0;
	fr(i,0,n)
	 fr(j,i,n)
	  if (f[i][j]<1e18){
	  	fr(k,j+1,n+1)
	  	 chkmin(f[j][k],f[i][j]+vv[j+1][k]+vwv(i+1,j,k+1));
	  }
	LL ans=1e18;
	fr(i,0,n) chkmin(ans,f[i][n+1]);
	cout<<ans<<endl;
	return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值