波浪理论及其线性化

一、波浪运动的控制方程及其边界条件

{ G . D . E : ∇ 2 Φ = ∂ 2 Φ ∂ x 2 + ∂ 2 Φ ∂ z 2 = 0 ,    ( − h ≤ z ≤ η ,   − ∞ ≤ x ≤ + ∞ ) B . B . C : ∂ Φ ∂ z = 0 ,   ( z = − h ) D . F . S . B . C : ∂ Φ ∂ t + 1 2 [ ( ∂ Φ ∂ x ) 2 + ( ∂ Φ ∂ z ) 2 ] + g z = 0 ,    ( z = η ) K . F . S . B . C : ∂ η ∂ t + ∂ η ∂ x ∂ Φ ∂ x − ∂ Φ ∂ z = 0 ,    ( z = η ) L . B . C : Φ ( x , z , t ) = Φ ( x − c t , z ) \begin{cases} G.D.E: &\nabla^2\Phi=\frac {\partial ^2 \Phi} {\partial x^2} + \frac {\partial ^2 \Phi} {\partial z^2}=0, \ \ (-h\le z\le\eta,\ -\infty\le x\le+\infty)\\\\ B.B.C: &\frac {\partial\Phi} {\partial z}=0,\ (z=-h)\\\\ D.F.S.B.C:&\frac {\partial\Phi} {\partial t}+\frac 1 2[(\frac{\partial\Phi} {\partial x})^2+(\frac{\partial\Phi} {\partial z})^2]+gz=0,\ \ (z=\eta)\\\\ K.F.S.B.C:&\frac {\partial\eta} {\partial t}+\frac {\partial\eta} {\partial x}\frac {\partial\Phi} {\partial x}-\frac {\partial\Phi} {\partial z}=0,\ \ (z=\eta)\\\\ L.B.C:&\Phi(x,z,t)=\Phi(x-ct,z) \end{cases} G.D.E:B.B.C:D.F.S.B.C:K.F.S.B.C:L.B.C:2Φ=x22Φ+z22Φ=0,  (hzη, x+)zΦ=0, (z=h)tΦ+21[(xΦ)2+(zΦ)2]+gz=0,  (z=η)tη+xηxΦzΦ=0,  (z=η)Φ(x,z,t)=Φ(xct,z)
【说明】
G.D.E: 波浪运动微分方程(控制方程)
B.B.C: 底部边界条件
D.F.S.B.C: 自由表面动力边界条件
K.F.S.B.C: 自由表面运动边界条件
L.B.C: 侧边界条件

上述原始的波浪运动控制方程在求解的过程中有两个难点

(1). 两个自由表面边界条件D.F.S.B.CK.F.S.B.C均有非线性项(分别为 + 1 2 [ ( ∂ Φ ∂ x ) 2 + ( ∂ Φ ∂ z ) 2 ] +\frac 1 2[(\frac{\partial\Phi} {\partial x})^2+(\frac{\partial\Phi} {\partial z})^2] +21[(xΦ)2+(zΦ)2] + ∂ η ∂ x ∂ Φ ∂ x +\frac {\partial\eta} {\partial x}\frac {\partial\Phi} {\partial x} +xηxΦ,难以求解;
(2). 自由水面位移 η \eta η在边界条件上的值是未知的,即自由表面边界条件不确定。


二、波浪运动方程的线性化及微幅波理论

为了解决上述两个难点,我们将基本方程线性化实际上是对两个自由表面边界条件D.F.S.B.C和K.F.S.B.C线性化。

【假设条件】:假设波浪运动是缓慢,振幅 η \eta η远比波长 L L L和水深 h h h,的考虑 H < < L , H < < h H<<L, H<<h H<<L,H<<h;根据波浪微小振幅假设,只保留一阶量,二阶量可忽略,且任意两个波浪要素之间的乘积也可忽略,于是有:

D.F.S.B.C: ∂ Φ ∂ t + 1 2 [ ( ∂ Φ ∂ x ) 2 + ( ∂ Φ ∂ z ) 2 ] + g z = 0 ,    ( z = η ) (1) \frac {\partial\Phi} {\partial t}+\cancel{\frac 1 2[(\frac{\partial\Phi} {\partial x})^2 +(\frac{\partial\Phi} {\partial z})^2]}+gz=0,\ \ (z=\eta)\tag{1} tΦ+21[(xΦ)2+(zΦ)2] +gz=0,  (z=η)(1)
K.F.S.B.C: ∂ η ∂ t + ∂ η ∂ x ∂ Φ ∂ x − ∂ Φ ∂ z = 0 ,    ( z = η ) (2) \frac {\partial\eta} {\partial t}+\cancel{\frac {\partial\eta} {\partial x}\frac {\partial\Phi} {\partial x}}-\frac {\partial\Phi} {\partial z}=0,\ \ (z=\eta)\tag{2} tη+xηxΦ zΦ=0,  (z=η)(2)
【数学工具】:
泰勒展开式: f ( x 0 + Δ x , y ) = f ( x 0 , y ) + ∂ f ( x 0 , y ) ∂ x Δ x + ∂ 2 f ( x 0 , y ) ∂ x 2 ( Δ x ) 2 2 ! + . . . + ∂ n f ( x 0 , y ) ∂ x n ( Δ x ) n n ! f(x_0+\Delta x,y)=f(x_0,y)+\frac {\partial f(x_0,y)} {\partial x}\Delta x+\frac {\partial^2 f(x_0,y)} {\partial x^2} \frac {(\Delta x)^2} {2!}+...+\frac {\partial^n f(x_0,y)} {\partial x^n} \frac {(\Delta x)^n} {n!} f(x0+Δx,y)=f(x0,y)+xf(x0,y)Δx+x22f(x0,y)2!(Δx)2+...+xnnf(x0,y)n!(Δx)n
只保留一阶: f ( x 0 + Δ x , y ) = f ( x 0 , y ) + ∂ f ( x 0 , y ) ∂ x Δ x (3) f(x_0+\Delta x,y)=f(x_0,y)+\frac {\partial f(x_0,y)} {\partial x}\Delta x \tag{3} f(x0+Δx,y)=f(x0,y)+xf(x0,y)Δx(3)
由于原波浪方程中 η \eta η的高度是未知不确定的,而在微幅波中我们认为 η \eta η足够小,于是可以用泰勒展开式将自由水面( z = η z=\eta z=η)关联到静水面上( z = 0 z=0 z=0)

D.F.S.B.C: [ ∂ Φ ∂ t + g z ] z = η = 0 [\frac {\partial\Phi} {\partial t}+gz]_{z=\eta}=0 [tΦ+gz]z=η=0泰勒展开: [ ∂ Φ ∂ t + g z ] z = 0 + ∂ [ ∂ Φ ∂ t + g z ] ∂ z η = 0 [\frac {\partial\Phi} {\partial t}+gz]_{z=0}+\frac {\partial \cancel{[\frac {\partial \Phi} {\partial t}}+gz]} {\partial z}\eta=0 [tΦ+gz]z=0+z[tΦ +gz]η=0 [ ∂ Φ ∂ t ] z = 0 + ∂ g z ∂ z η = 0 [\frac {\partial\Phi} {\partial t}]_{z=0}+\frac {\partial gz} {\partial z}\eta=0 [tΦ]z=0+zgzη=0 [ ∂ Φ ∂ t ] z = 0 + g η = 0 [\frac {\partial\Phi} {\partial t}]_{z=0}+g\eta=0 [tΦ]z=0+gη=0 η = − 1 g ∂ Φ ∂ t , ( z = 0 ) (4) {\eta=-\frac 1 g \frac {\partial\Phi} {\partial t}, (z=0)}\tag{4} η=g1tΦ,(z=0)(4)
【结论】:在线性波中,自由表面的位移和速度势函数的时间变化率成线性关系


K.F.S.B.C: [ ∂ η ∂ t − ∂ Φ ∂ z ] z = η = 0 [\frac {\partial\eta} {\partial t}-\frac {\partial\Phi} {\partial z}]_{z=\eta}=0 [tηzΦ]z=η=0泰勒展开: [ ∂ η ∂ t − ∂ Φ ∂ z ] z = 0 + ∂ ( ∂ η ∂ t − ∂ Φ ∂ z ) ∂ z η = 0 [\frac {\partial\eta} {\partial t}-\frac {\partial\Phi} {\partial z}]_{z=0}+\frac {\partial (\cancel{\frac {\partial \eta} {\partial t}}-\cancel{\frac {\partial \Phi} {\partial z}})} {\partial z}\eta =0 [tηzΦ]z=0+z(tη zΦ )η=0 ∂ η ∂ t − ∂ Φ ∂ z = 0 , ( z = 0 ) \frac {\partial\eta} {\partial t}-\frac {\partial\Phi} {\partial z}=0, (z=0) tηzΦ=0,(z=0) ∂ η ∂ t = ∂ Φ ∂ z , ( z = 0 ) (5) \frac {\partial\eta} {\partial t}=\frac {\partial\Phi} {\partial z}, (z=0)\tag{5} tη=zΦ,(z=0)(5)

至此,线性化之后的波浪运动控制方程及其边界条件可得:

{ G . D . E : ∇ 2 Φ = ∂ 2 Φ ∂ x 2 + ∂ 2 Φ ∂ z 2 = 0 ,    ( − h ≤ z ≤ η ,   − ∞ ≤ x ≤ + ∞ ) B . B . C : ∂ Φ ∂ z = 0 ,   ( z = − h ) D . F . S . B . C : η = − 1 g ∂ Φ ∂ t , ( z = 0 ) K . F . S . B . C : ∂ η ∂ t = ∂ Φ ∂ z , ( z = 0 ) L . B . C : Φ ( x , z , t ) = Φ ( x − c t , z ) \begin{cases} G.D.E: &\nabla^2\Phi=\frac {\partial ^2 \Phi} {\partial x^2} + \frac {\partial ^2 \Phi} {\partial z^2}=0, \ \ (-h\le z\le\eta,\ -\infty\le x\le+\infty)\\\\ B.B.C: &\frac {\partial\Phi} {\partial z}=0,\ (z=-h)\\\\ D.F.S.B.C:&{\eta=-\frac 1 g \frac {\partial\Phi} {\partial t}, (z=0)}\\\\ K.F.S.B.C:&\frac {\partial\eta} {\partial t}=\frac {\partial\Phi} {\partial z}, (z=0)\\\\ L.B.C:&\Phi(x,z,t)=\Phi(x-ct,z) \end{cases} G.D.E:B.B.C:D.F.S.B.C:K.F.S.B.C:L.B.C:2Φ=x22Φ+z22Φ=0,  (hzη, x+)zΦ=0, (z=h)η=g1tΦ,(z=0)tη=zΦ,(z=0)Φ(x,z,t)=Φ(xct,z)

因为采用线性化方法处理控制方程,故微幅波理论又称线性波理论;该方法由Airy最先提出,故又称Airy波理论

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值