波浪能及波能流的推导


前言

在二维波浪中,波浪能指单宽波峰线长度内一个波长范围(或一个周期内)中所储存的总能量,由势能和动能两部分构成。


一、涉及到的数学公式

∫ s i n 2 x d x = x 2 − 1 4 s i n 2 x + C (1) \int sin^2xdx=\frac x 2-\frac 1 4sin2x+C\tag{1} sin2xdx=2x41sin2x+C(1) ∫ c o s 2 x d x = x 2 + 1 4 s i n 2 x + C (2) \int cos^2xdx=\frac x 2+\frac 1 4sin2x+C\tag{2} cos2xdx=2x+41sin2x+C(2) ∫ s i n h 2 x d x = − x 2 + 1 4 s i n 2 x + C (3) \int sinh^2xdx=-\frac x 2+\frac 1 4sin2x+C\tag{3} sinh2xdx=2x+41sin2x+C(3) ∫ c o s h 2 x d x = x 2 + 1 4 s i n 2 x + C (4) \int cosh^2xdx=\frac x 2+\frac 1 4sin2x+C\tag{4} cosh2xdx=2x+41sin2x+C(4) c o s h ( 2 x ) = c o s h 2 x + s i n h 2 x (5) cosh(2x)=cosh^2x+sinh^2x\tag{5} cosh(2x)=cosh2x+sinh2x(5) s i n h ( 2 x ) = 2 s i n h x c o s h x (6) sinh(2x)=2sinhxcoshx\tag{6} sinh(2x)=2sinhxcoshx(6)

二、波浪势能

波浪势能由水质点偏离平衡位置所致,因此一个波长范围内(或一个周期内)单宽波峰线长度所具有的势能可以表示为:
  E p = ∫ 0 L ∫ 0 η ρ g z d z d x   = ρ g ∫ 0 L ( 1 2 z 2 ∣ 0 η ) d x   = ρ g 2 ∫ 0 L η 2 d x \begin{aligned} \ E_p=&\int _0^L \int^{\eta}_0 \rho gzdzdx \\ \ =&\rho g \int^L_0(\frac 1 2 z^2| ^{\eta}_0)dx\\ \ =&\frac {\rho g} 2 \int^L_0 \eta^2dx \end{aligned}  Ep= = =0L0ηρgzdzdxρg0L(21z20η)dx2ρg0Lη2dx
取余弦波有 η = H 2 c o s ( k x − σ t ) \eta = \frac H 2 cos(kx-\sigma t) η=2Hcos(kxσt),得:
  = ρ g 2 ∫ 0 L H 2 4 c o s 2 ( k x − σ t ) d x   = ρ g H 2 8 ∫ 0 L c o s 2 ( k x − σ t ) d x \begin{aligned} \ =&\frac {\rho g} 2 \int^L_0 \frac {H^2} 4 cos^2(kx-\sigma t)dx\\ \ =&\frac {\rho g H^2} 8 \int^L_0cos^2(kx-\sigma t)dx\\ \end{aligned}  = =2ρg0L4H2cos2(kxσt)dx8ρgH20Lcos2(kxσt)dx
换 元 法 , 令 u = k x − σ t , 则 有 d u d x = 1 k = > d u = 1 k d x , x ∈ [ 0 , L ] , u ∈ [ − σ t , L k − σ t ] , 有 : 换元法,令u=kx-\sigma t,则有\frac {du} {dx}=\frac 1 k=>du=\frac 1 k dx, x\in[0,L], u\in[-\sigma t,Lk-\sigma t],有: u=kxσtdxdu=k1=>du=k1dx,x[0,L],u[σt,Lkσt]
  = ρ g H 2 8 k ∫ σ t L k − σ t c o s 2 u d u   运 用 式 ( 2 ) 求 解 得 = ρ g H 2 8 k ( u 2 + 1 4 s i n 2 u ∣ σ t L k − σ t )   = ρ g H 2 8 k [ L k 2 + 1 4 s i n ( 2 L k − 2 σ t ) − 1 4 s i n 2 ( − σ t ) ]   = ρ g H 2 8 k [ L k 2 + 1 4 ( s i n 2 L k c o s 2 σ t − s i n 2 σ t c o s 2 L k + s i n 2 ( σ t ) ] \begin{aligned} \ =&\frac {\rho g H^2} {8k} \int^{Lk-\sigma t}_{\sigma t}cos^2udu\\\\ \ 运用式(2)求解得=&\frac {\rho g H^2} {8k}(\frac u 2+\frac 1 4 sin2u|^{Lk-\sigma t}_{\sigma t})\\ \ =&\frac {\rho g H^2} {8k}[\frac {Lk} 2 +\frac 1 4 sin(2Lk-2\sigma t)-\frac 1 4 sin2(-\sigma t)]\\ \ =&\frac {\rho g H^2} {8k}[\frac {Lk} 2 +\frac 1 4 (sin2Lkcos2\sigma t-sin2\sigma tcos2Lk+sin2(\sigma t)] \end{aligned}  = 2= = =8kρgH2σtLkσtcos2udu8kρgH22u+41sin2uσtLkσt)8kρgH2[2Lk+41sin(2Lk2σt)41sin2(σt)]8kρgH2[2Lk+41(sin2Lkcos2σtsin2σtcos2Lk+sin2(σt)] 有 k = 2 π L , 故 s i n 2 L k = s i n 4 π = 0 、 c o s 2 L k = c o s 4 π = 1 , 上 式 化 简 得 : 有k=\frac {2\pi} L,故sin2Lk=sin4\pi=0、cos2Lk=cos4\pi=1,上式化简得: k=L2πsin2Lk=sin4π=0cos2Lk=cos4π=1
  E p = ρ g H 2 8 k L k 2   = ρ g H 2 L 16 \begin{aligned} \ E_p=&\frac {\rho g H^2} {8k} \frac {Lk} 2\\\\ \ =&\frac {\rho g H^2L} {16} \end{aligned}  Ep= =8kρgH22Lk16ρgH2L

三、波浪动能

波浪动能由质点运动产生,已知质点速度
u = H σ 2 c o s h k ( h + z ) s i n h k h c o s ( k x − σ t ) u=\frac {H \sigma} 2 \frac{coshk(h+z)} {sinhkh} cos(kx-\sigma t) u=2Hσsinhkhcoshk(h+z)cos(kxσt) w = H σ 2 s i n h k ( h + z ) s i n h k h s i n ( k x − σ t ) w=\frac {H \sigma} 2 \frac{sinhk(h+z)} {sinhkh} sin(kx-\sigma t) w=2Hσsinhkhsinhk(h+z)sin(kxσt)
一个波长范围内(或一个周期内)单宽波峰线长度所具有的动能可以表示为:
  E k = ∫ 0 L ∫ − h 0 ρ 2 ( u 2 + w 2 ) d z d x   = H 2 σ 2 4 ⋅ ρ 2 [ ∫ 0 L ∫ − h 0 c o s h 2 k ( h + z ) s i n h 2 k h c o s 2 ( k x − σ t ) d z d x   + ∫ 0 L ∫ − h 0 s i n h 2 k ( h + z ) s i n h 2 k h s i n 2 ( k x − σ t ) d z d x ] \begin{aligned} \ E_k=&\int _0^L \int^{0}_{-h} \frac \rho 2 (u^2+w^2)dzdx \\\\ \ =&\frac {H^2 \sigma^2} 4 \cdot \frac \rho 2[\int _0^L \int^{0}_{-h}\frac {cosh^2k(h+z)} {sinh^2kh} cos^2(kx-\sigma t)dzdx\\ \ +&\int _0^L \int^{0}_{-h} \frac {sinh^2k(h+z)} {sinh^2kh} sin^2(kx-\sigma t)dzdx] \end{aligned}  Ek= = +0Lh02ρ(u2+w2)dzdx4H2σ22ρ[0Lh0sinh2khcosh2k(h+z)cos2(kxσt)dzdx0Lh0sinh2khsinh2k(h+z)sin2(kxσt)dzdx]
令其中 E k E_k Ek表达式中系数项为①,中括号内第1个二重积分项为②,中括号内第2个二重积分项为③;

取积分项②:
  = ∫ 0 L ∫ − h 0 c o s h 2 k ( h + z ) s i n h 2 k h c o s 2 ( k x − σ t ) d z d x   = 1 s i n h 2 k h ∫ 0 L c o s 2 ( k x − σ t ) d x ∫ − h 0 c o s h 2 [ k ( h + z ) ] d z \begin{aligned} \ =&\int _0^L \int^{0}_{-h}\frac {cosh^2k(h+z)} {sinh^2kh} cos^2(kx-\sigma t)dzdx\\ \ =&\frac 1 {sinh^2kh} \int_0^Lcos^2(kx-\sigma t)dx \int_{-h}^0 cosh^2[k(h+z)]dz\\ \end{aligned}  = =0Lh0sinh2khcosh2k(h+z)cos2(kxσt)dzdxsinh2kh10Lcos2(kxσt)dxh0cosh2[k(h+z)]dz
换 元 法 , 令 u 1 = k ( x + z ) , 则 有 d u 1 d z = 1 k = > d z = 1 k d u 1 , z ∈ [ − h , 0 ] , u 1 ∈ [ 0 , k h ] , 有 : 换元法,令u_1=k(x+z),则有\frac {du_1} {dz}=\frac 1 k=>dz=\frac 1 k du_1, z\in[-h,0], u_1\in[0,kh],有: u1=k(x+z)dzdu1=k1=>dz=k1du1,z[h,0],u1[0,kh]
  = 1 k s i n h 2 k h ∫ 0 L c o s 2 ( k x − σ t ) d x ∫ 0 k h c o s h 2 u 1 d u 1   运 用 式 ( 4 ) 得 = 1 k s i n h 2 k h ∫ 0 L c o s 2 ( k x − σ t ) d x ⋅ [ k h 2 + 1 4 s i n h ( 2 k h ) ]   = k h 2 + 1 4 s i n h ( 2 k h ) k s i n h 2 k h ∫ 0 L c o s 2 ( k x − σ t ) d x \begin{aligned} \ =&\frac 1 {ksinh^2kh} \int_0^Lcos^2(kx-\sigma t)dx \int_{0}^{kh} cosh^2u_1du_1\\ \ 运用式(4)得=&\frac 1 {ksinh^2kh} \int_0^Lcos^2(kx-\sigma t)dx \cdot [\frac {kh} 2+\frac 1 4 sinh(2kh)]\\\\ \ =&\frac {\frac {kh} 2+\frac 1 4 sinh(2kh)} {ksinh^2kh}\int_0^Lcos^2(kx-\sigma t)dx\\\\ \end{aligned}  = 4= =ksinh2kh10Lcos2(kxσt)dx0khcosh2u1du1ksinh2kh10Lcos2(kxσt)dx[2kh+41sinh(2kh)]ksinh2kh2kh+41sinh(2kh)0Lcos2(kxσt)dx
积分项与势能推导中相同,则②化简可得: = k h 2 + 1 4 s i n h ( 2 k h ) k 2 s i n h 2 k h k L 2 (7) =\frac {\frac {kh} 2+\frac 1 4 sinh(2kh)} {k^2sinh^2kh} \frac {kL} 2 \tag{7} =k2sinh2kh2kh+41sinh(2kh)2kL(7)

E k E_k Ek表达式中中括号内第2项③:
  = ∫ 0 L ∫ − h 0 s i n h 2 [ k ( h + z ) ] s i n h 2 k h s i n 2 ( k x − σ t ) d z d x   = 1 s i n h 2 k h ∫ 0 L s i n 2 ( k x − σ t ) d x ∫ − h 0 s i n h 2 [ k ( h + z ) ] d z \begin{aligned} \ =&\int _0^L \int^{0}_{-h} \frac {sinh^2[k(h+z)]} {sinh^2kh} sin^2(kx-\sigma t)dzdx\\ \ =&\frac {1} {sinh^2kh} \int^{L}_{0}sin^2(kx-\sigma t)dx\int^{0}_{-h}sinh^2[k(h+z)]dz\\ \end{aligned}  = =0Lh0sinh2khsinh2[k(h+z)]sin2(kxσt)dzdxsinh2kh10Lsin2(kxσt)dxh0sinh2[k(h+z)]dz
换 元 法 , 令 u 2 = k ( x + z ) , 则 有 d u 2 d z = 1 k = > d z = 1 k d u 2 , z ∈ [ − h , 0 ] , u 2 ∈ [ 0 , k h ] , 有 : 换元法,令u_2=k(x+z),则有\frac {du_2} {dz}=\frac 1 k=>dz=\frac 1 k du_2, z\in[-h,0], u_2\in[0,kh],有: u2=k(x+z)dzdu2=k1=>dz=k1du2,z[h,0],u2[0,kh]
  = 1 k s i n h 2 k h ∫ 0 L s i n 2 ( k x − σ t ) d x ∫ 0 k h s i n h 2 u 2 d u 2   运 用 式 ( 3 ) 得 = 1 k s i n h 2 k h ∫ 0 L s i n 2 ( k x − σ t ) d x ⋅ [ − k h 2 + 1 4 s i n h ( 2 k h ) ]   = − k h 2 + 1 4 s i n h ( 2 k h ) k s i n h 2 k h ∫ 0 L s i n 2 ( k x − σ t ) d x \begin{aligned} \ =&\frac 1 {ksinh^2kh} \int_0^Lsin^2(kx-\sigma t)dx \int_{0}^{kh} sinh^2u_2du_2\\ \ 运用式(3)得=&\frac 1 {ksinh^2kh} \int_0^Lsin^2(kx-\sigma t)dx \cdot [-\frac {kh} 2+\frac 1 4 sinh(2kh)]\\\\ \ =&\frac {-\frac {kh} 2+\frac 1 4 sinh(2kh)} {ksinh^2kh}\int_0^Lsin^2(kx-\sigma t)dx\\\\ \end{aligned}  = 3= =ksinh2kh10Lsin2(kxσt)dx0khsinh2u2du2ksinh2kh10Lsin2(kxσt)dx[2kh+41sinh(2kh)]ksinh2kh2kh+41sinh(2kh)0Lsin2(kxσt)dx
令上式系数项为④,积分项为⑤,则③=④ × \times ×

取⑤:

换 元 法 , 令 u 3 = k x − σ t , 则 有 d u 3 d x = 1 k = > d u 3 = 1 k d x , x ∈ [ 0 , L ] , u ∈ [ − σ t , L k − σ t ] , 有 : 换元法,令u_3=kx-\sigma t,则有\frac {du_3} {dx}=\frac 1 k=>du_3=\frac 1 k dx, x\in[0,L], u\in[-\sigma t,Lk-\sigma t],有: u3=kxσtdxdu3=k1=>du3=k1dx,x[0,L],u[σt,Lkσt]
  = ( u 3 2 − 1 4 s i n 2 u 3 ) ∣ − σ t k L − σ t   = [ k L 2 − 1 4 × ( s i n 2 k L c o s 2 σ t − s i n 2 σ t c o s 2 k L − s i n 2 ( − σ t ) ) ] \begin{aligned} \ =&(\frac {u_3} 2- \frac 1 4 sin2u_3)|^{kL-\sigma t}_{-\sigma t}\\ \ =&[\frac {kL} 2-\frac 1 4 \times (sin2kLcos2\sigma t - sin2\sigma tcos2kL - sin2(-\sigma t))] \end{aligned}  = =(2u341sin2u3)σtkLσt[2kL41×(sin2kLcos2σtsin2σtcos2kLsin2(σt))] 有 k = 2 π L , 故 s i n 2 L k = s i n 4 π = 0 、 c o s 2 L k = c o s 4 π = 1 , 上 式 化 简 得 : ⑤ = k L 2 有k=\frac {2\pi} L,故sin2Lk=sin4\pi=0、cos2Lk=cos4\pi=1,上式化简得:⑤=\frac {kL} 2 k=L2πsin2Lk=sin4π=0cos2Lk=cos4π=1=2kL
有: ③ = − k h 2 + 1 4 s i n h ( 2 k h ) k s i n h 2 k h × k L 2 ③=\frac {-\frac {kh} 2+\frac 1 4 sinh(2kh)} {ksinh^2kh} \times \frac {kL} 2 =ksinh2kh2kh+41sinh(2kh)×2kL

  E k = ① × ( ② + ③ )   = H 2 σ 2 4 ⋅ ρ 2 × [ ( k h 2 + 1 4 s i n h ( 2 k h ) k 2 s i n h 2 k h k L 2 + − k h 2 + 1 4 s i n h ( 2 k h ) k s i n h 2 k h × k L 2 ) ]   = H 2 σ 2 ρ L 16 [ 1 2 s i n h ( 2 k h ) k s i n h 2 k h ]   = H 2 σ 2 ρ L 16 × 1 k s i n h 2 k h \begin{aligned} \ E_k=&① \times (② + ③)\\ \ =&\frac {H^2 \sigma^2} 4 \cdot \frac \rho 2 \times[(\frac {\frac {kh} 2+\frac 1 4 sinh(2kh)} {k^2sinh^2kh} \frac {kL} 2+\frac {-\frac {kh} 2+\frac 1 4 sinh(2kh)} {ksinh^2kh} \times \frac {kL} 2)]\\\\ \ =&\frac {H^2 \sigma^2\rho L} {16} [\frac {\frac 1 2 sinh(2kh)} {ksinh^2kh}]\\\\ \ =&\frac {H^2 \sigma^2\rho L} {16} \times \frac 1 {ksinh^2kh}\\\\ \end{aligned}  Ek= = = =×(+)4H2σ22ρ×[(k2sinh2kh2kh+41sinh(2kh)2kL+ksinh2kh2kh+41sinh(2kh)×2kL)]16H2σ2ρL[ksinh2kh21sinh(2kh)]16H2σ2ρL×ksinh2kh1
根据弥散方程 σ 2 = g k t a n h k h \sigma^2=gktanhkh σ2=gktanhkh,代入化简得:
E k = ρ g H 2 L 16 E_k=\frac {\rho g H^2L} {16} Ek=16ρgH2L

至此我们求得微幅波的波浪势能和波浪动能相等,即 E k = E p = ρ g H 2 L 16 E_k=E_p=\frac {\rho g H^2L} {16} Ek=Ep=16ρgH2L

四、波能流(波功率)

波能流又称波功率,是单位宽度上波能的传递率,或认为是动水压力在波浪传播方向上做的功。
  P = ∫ 0 L ∫ − h 0 P d u d z d x   其 中 P d = ρ g H 2 ⋅ c o s h k ( h + z ) c o s h k h ⋅ c o s ( k x − σ t )   u = H σ 2 c o s h k ( h + z ) s i n h k h c o s ( k x − σ t )   因 此 P d ⋅ u = ρ g H 2 σ 4 ⋅ c o s h 2 [ k ( h + z ) ] 1 2 s i n h ( 2 k h ) c o s 2 ( k x − σ t )   故 P = ρ g H 2 σ 4 ⋅ 1 1 2 s i n h ( 2 k h ) ∫ 0 L c o s 2 ( k x − σ t ) d x ∫ − h 0 c o s h 2 [ k ( h + z ) ] d z \begin{aligned} \ P=&\int ^L_0 \int^0_{-h}P_dudzdx\\\\ \ 其中P_d=&\frac {\rho g H} 2 \cdot \frac {coshk(h+z)} {coshkh} \cdot cos(kx-\sigma t)\\\\ \ u=&\frac {H \sigma} 2 \frac{coshk(h+z)} {sinhkh} cos(kx-\sigma t)\\\\ \ 因此P_d \cdot u=&\frac {\rho g H^2 \sigma} 4 \cdot \frac {cosh^2[k(h+z)]} {\frac 1 2 sinh(2kh)} cos^2(kx-\sigma t)\\\\ \ 故P =&\frac {\rho g H^2 \sigma} 4\cdot \frac {1} {\frac 1 2 sinh(2kh)} \int^L_0cos^2(kx-\sigma t)dx \int^0_{-h}cosh^2[k(h+z)]dz\\\\ \end{aligned}  P= Pd= u= Pdu= P=0Lh0Pdudzdx2ρgHcoshkhcoshk(h+z)cos(kxσt)2Hσsinhkhcoshk(h+z)cos(kxσt)4ρgH2σ21sinh(2kh)cosh2[k(h+z)]cos2(kxσt)4ρgH2σ21sinh(2kh)10Lcos2(kxσt)dxh0cosh2[k(h+z)]dz
令上式系数项为⑥,第二积分项为⑦,第三积分项为⑧:

取第三积分项⑧:
∫ − h 0 c o s h 2 [ k ( h + z ) ] d z \int^0_{-h}cosh^2[k(h+z)]dz h0cosh2[k(h+z)]dz 换 元 法 , 令 u 4 = k ( x + z ) , 则 有 d u 4 d z = 1 k = > d z = 1 k d u 4 , z ∈ [ − h , 0 ] , u 4 ∈ [ 0 , k h ] , 有 : 换元法,令u_4=k(x+z),则有\frac {du_4} {dz}=\frac 1 k=>dz=\frac 1 k du_4, z\in[-h,0], u_4\in[0,kh],有: u4=k(x+z)dzdu4=k1=>dz=k1du4,z[h,0],u4[0,kh]
  = 1 k ∫ 0 k h c o s h 2 u 4 d u 4   = 1 k × [ k h 2 + 1 4 s i n h ( 2 k h ) ] \begin{aligned} \ =&\frac 1 k \int^{kh}_0 cosh^2u_4du_4\\ \ =&\frac 1 k \times [\frac {kh} 2 + \frac 1 4 sinh(2kh)] \end{aligned}  = =k10khcosh2u4du4k1×[2kh+41sinh(2kh)]

取第二积分项⑦:
  = ∫ 0 L c o s 2 ( k x − σ t ) d x   积 分 项 上 文 求 过 = L 2 \begin{aligned} \ =&\int^L_0cos^2(kx-\sigma t)dx\\ \ 积分项上文求过=&\frac L 2 \end{aligned}  = =0Lcos2(kxσt)dx2L

故原式 P = ⑥ × ⑦ × ⑧ , 有 : P=⑥\times ⑦ \times⑧,有: P=××
  P = ρ g H 2 σ 4 ⋅ 1 1 2 s i n h ( 2 k h ) × L 2 × 1 k × [ k h 2 + 1 4 s i n h ( 2 k h ) ]   整 理 = ρ g H 2 8 × σ k × 1 2 [ 2 k h s i n h ( 2 k h ) + 1 ]   令 波 能 传 播 速 率 n = 1 2 [ 2 k h s i n h ( 2 k h ) + 1 ]   则 P = ( E p + E k ) ⋅ c ⋅ n \begin{aligned} \ P=&\frac {\rho g H^2 \sigma} 4\cdot \frac {1} {\frac 1 2 sinh(2kh)}\times \frac L 2 \times \frac 1 k \times [\frac {kh} 2 + \frac 1 4 sinh(2kh)]\\\\ \ 整理=&\frac {\rho g H^2 } 8\times \frac {\sigma} k \times \frac 1 2 [\frac {2kh} {sinh(2kh)} +1]\\\\ \ 令波能传播速率n=&\frac 1 2 [\frac {2kh} {sinh(2kh)} +1]\\\\ \ 则P=&(E_p+E_k)\cdot c \cdot n \end{aligned}  P= = n= P=4ρgH2σ21sinh(2kh)1×2L×k1×[2kh+41sinh(2kh)]8ρgH2×kσ×21[sinh(2kh)2kh+1]21[sinh(2kh)2kh+1](Ep+Ek)cn
至此我们求得微幅波的波能流(或波功率)

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值