常系数齐次线性微分方程的解及其在求解微幅波控制方程中的运用


一、齐次线性微分方程及其求解

首先回顾什么是齐次线性微分方程,本文以二阶为例:

二阶齐次线性微分方程:
y ′ ′ + P ( x ) y ′ + Q ( x ) y = 0 (1) y''+P(x)y'+Q(x)y=0\tag{1} y+P(x)y+Q(x)y=0(1)
【说明】:
二阶:方程中y’'为最高阶,故方程是二阶
齐次:等式右边=0
线性:微分项次数均为1,没有形如 y ′ ′ 2 、 y ′ 2 y''^2、y'^2 y2y2的项
要点:线性微分方程的解是有结构的,即不是靠积分求导变换硬推出来的

| 解的结构:

如果 y 1 ( x ) y_1(x) y1(x) y 2 ( x ) y_2(x) y2(x)是方程(1)的两个线性无关的特解
那么 y = C 1 y 1 ( x ) + C 2 y 2 ( x ) y=C_1y_1(x)+C_2y_2(x) y=C1y1(x)+C2y2(x) (其中 C 1 , C 2 C_1, C_2 C1,C2是任意常数)是方程(1)的通解

——同济版《高等数学》> 第七章第六节 > 高阶线性微分方程 > 定理2

| 例如:

在这里插入图片描述
y = C 1 c o s x + C 2 s i n x (2) y=C_1cosx+C_2sinx\tag{2} y=C1cosx+C2sinx(2)

求解过程中关键操作即找出方程的两个特解。本案例中即需要知道 ( c o s x ) ′ ′ + c o s x = 0 (cosx)''+cosx=0 (cosx)+cosx=0以及 ( s i n x ) ′ ′ + s i n x = 0 (sinx)''+sinx=0 (sinx)+sinx=0。当微分方程本身很复杂,一眼看不出解的时候便很难凑出来。


二、常系数齐次线性微分方程及其求解

当方程(1)中的 P ( x ) P(x) P(x) Q ( x ) Q(x) Q(x)均为常数时,称之为常系数齐次线性微分方程:
y ′ ′ + p y ′ + q y = 0 (3) y''+py'+qy=0\tag{3} y+py+qy=0(3)
它的解的结构就变得更简单了,因为我们知道有一个非常漂亮函数的特性完美符合该方程的形式,即:
y = e r x (4) y=e^{rx}\tag{4} y=erx(4)
它和它的各阶导数都只相差一个常数因子,即:
y ′ = r e r x , y ′ ′ = r 2 e r x (5) y'=re^{rx}, y''=r^2e^{rx}\tag{5} y=rerx,y=r2erx(5)
将式(5)代入原方程(3)得:
( r 2 + p r + q ) e r x = 0 (6) (r^2+pr+q)e^{rx}=0\tag{6} (r2+pr+q)erx=0(6)
由于 e r x ≠ 0 e^rx\ne0 erx=0,所以:
r 2 + p r + q = 0 (7) r^2+pr+q=0\tag{7} r2+pr+q=0(7)
至此,只要 r r r满足代数方程(7),函数 y = e r x y=e^{rx} y=erx就是微分方程(3)的解,因此我们把代数方程(7)称作微分方程(3)的特征方程

| 特征方程的解

特征方程(7)是一个二元一次方程,根有三种情况:

(1)两个不同的实数根:

解方程(7)求出两个解 r 1 , r 2 r_1,r_2 r1,r2, 有两个特解为 y 1 = e r 1 x , y 2 = e r 2 x y_1=e^{r_1x}, y_2=e^{r_2x} y1=er1x,y2=er2x, 通解为:
y = C 1 e r 1 x + C 2 e r 2 x (8) y=C_1e^{r_1x}+C_2e^{r_2x}\tag{8} y=C1er1x+C2er2x(8)

(2)两个相同的实数根:

此时解方程(7)只得到微分方程的一个特解: y 1 = e r 1 x y_1=e^{r1x} y1=er1x;对于二阶齐次线性方程上文讲到需要两个线性无关的特解来构造通解,此时还需要一个特解 y 2 y_2 y2,且要求 y 1 / y 2 y1/y2 y1/y2不为常数。不妨设 y 2 / y 1 = x y_2/y_1=x y2/y1=x, 即有: y 2 = x e r 1 x y_2=xe^{r1x} y2=xer1x;因此:
y = ( C 1 + C 2 x ) e r 1 x (9) y=(C_1+C_2x)e^{r1x}\tag{9} y=(C1+C2x)er1x(9)

(3)两个不同的共轭复数根:

y 1 = e ( a + b i ) x , y 2 = e ( a − b i ) x y_1=e^{(a+bi)x}, y_2=e^{(a-bi)x} y1=e(a+bi)x,y2=e(abi)x为微分方程的两个特解,使用欧拉方程 e i θ = c o s θ + i s i n θ e^{i\theta}=cos\theta+isin\theta eiθ=cosθ+isinθ将复值函数变成实值函数形式:
y 1 = e ( a + b i ) x = e a x ∙ e b x i = e a x ( c o s b x + i s i n b x ) y_1=e^{(a+bi)x}=e^{ax}\bullet e^{bxi}=e^{ax}(cosbx+isinbx) y1=e(a+bi)x=eaxebxi=eax(cosbx+isinbx) y 2 = e ( a − b i ) x = e a x ∙ e b x i = e a x ( c o s b x − i s i n b x ) y_2=e^{(a-bi)x}=e^{ax}\bullet e^{bxi}=e^{ax}(cosbx-isinbx) y2=e(abi)x=eaxebxi=eax(cosbxisinbx)
化简:利用复数共轭关系以及微分方程的解符合叠加原理:
y 3 = 1 2 ( y 1 + y 2 ) = e a x c o s b x y_3=\frac 1 2(y_1+y_2)=e^{ax}cosbx y3=21(y1+y2)=eaxcosbx y 4 = 1 2 i ( y 1 − y 2 ) = e a x c o s b x y_4=\frac 1 {2i}(y_1-y_2)=e^{ax}cosbx y4=2i1(y1y2)=eaxcosbx
y 3 , y 4 y_3,y_4 y3,y4仍是方程的特解,且 y 3 y 4 = e a x c o s b x e a x s i n b x = c o t b x \frac {y_3} {y_4} = \frac {e^{ax}cosbx} {e^{ax}sinbx} = cotbx y4y3=eaxsinbxeaxcosbx=cotbx不是常数, y 3 , y 4 y_3, y_4 y3,y4线性无关,故方程的通解为:
y = e a x ( C 1 c o s b x + C 2 s i n b x ) (10) y=e^{ax}(C_1cosbx+C_2sinbx)\tag{10} y=eax(C1cosbx+C2sinbx)(10)



三、总 结

同济版教材总结了上述求解过程:
在这里插入图片描述
——同济版《高等数学》,图源:大家网 topsage.com


四、补 充:判断二元一次方程根的分布:

高中数学,判断 Δ = − b ± b 2 − 4 a c 2 a \Delta=\frac {-b\pm\sqrt{b^2-4ac}} {2a} Δ=2ab±b24ac 与0的大小,在二次常系数线性微分方程的特征方程中:
在这里插入图片描述
——同济版《高等数学》,图源:大家网 topsage.com

至此:我们学会了如何求解二阶常系数齐次线性微分方程



五、在求解微幅波控制方程中的运用

本案例使用余弦描述自由表面运动,即设 η = H 2 c o s ( k x − σ t ) \eta=\frac H 2 cos(kx-\sigma t) η=2Hcos(kxσt),其中 k = 2 π L , σ = 2 π T k=\frac {2\pi} L, \sigma=\frac{2\pi}T k=L2π,σ=T2π


根据线性波(微幅波)自由表面动力边界条件(D.F.S.B.C)可知: η = − 1 g ∂ Φ ∂ t , w h e n : z = 0 (11) \eta=-\frac 1 g \frac {\partial \Phi} {\partial t}, when: z=0\tag{11} η=g1tΦ,when:z=0(11)
式(11)说明 η \eta η和速度势时间上的变化率使线性关系,不妨设 Φ = f ( z ) s i n ( k x − σ t ) \Phi=f(z)sin(kx-\sigma t) Φ=f(z)sin(kxσt),即求解出 f ( z ) f(z) f(z)即可求解出 Φ \Phi Φ


根据微幅波控制方程(G.D.E): ∂ 2 Φ ∂ x 2 + ∂ 2 Φ ∂ z 2 = 0 (12) \frac {\partial ^2 \Phi} {\partial x^2} + \frac {\partial ^2 \Phi} {\partial z^2}=0\tag{12} x22Φ+z22Φ=0(12)
有:
{ ∂ Φ ∂ x = f ( z ) k c o s ( k x − σ t ) ∂ Φ ∂ z = f ′ ( z ) s i n ( k x − σ t ) \begin{cases} \frac {\partial \Phi} {\partial x} = f(z)kcos(kx-\sigma t)\\\\ \frac {\partial \Phi} {\partial z} = f'(z)sin(kx-\sigma t) \end{cases} xΦ=f(z)kcos(kxσt)zΦ=f(z)sin(kxσt)
{ ∂ 2 Φ ∂ x 2 = − f ( z ) k 2 s i n ( k x − σ t ) ∂ 2 Φ ∂ z 2 = f ′ ′ ( z ) s i n ( k x − σ t ) \begin{cases} \frac {\partial ^2 \Phi} {\partial x^2}= -f(z)k^2sin(kx-\sigma t)\\\\ \frac {\partial ^2 \Phi} {\partial z^2} = f''(z)sin(kx-\sigma t) \end{cases} x22Φ=f(z)k2sin(kxσt)z22Φ=f(z)sin(kxσt)
式(12)则化为:
∂ 2 Φ ∂ x 2 + ∂ 2 Φ ∂ z 2 = 0 \frac {\partial ^2 \Phi} {\partial x^2} + \frac {\partial ^2 \Phi} {\partial z^2}=0 x22Φ+z22Φ=0
f ′ ′ ( z ) s i n ( k x − σ t ) − f ( z ) k 2 s i n ( k x − σ t ) = 0 (13) f''(z)sin(kx-\sigma t)-f(z)k^2sin(kx-\sigma t)=0\tag{13} f(z)sin(kxσt)f(z)k2sin(kxσt)=0(13)
化简:
[ f ′ ′ ( z ) − k 2 f ( z ) ] s i n ( k x − σ t ) = 0 [f''(z)-k^2f(z)]sin(kx-\sigma t)=0 [f(z)k2f(z)]sin(kxσt)=0其中 s i n ( k x − σ t ) sin(kx-\sigma t) sin(kxσt)不恒为0,则要求 [ f ′ ′ ( z ) − k 2 f ( z ) ] [f''(z)-k^2f(z)] [f(z)k2f(z)]恒为0。
[ f ′ ′ ( z ) − k 2 f ( z ) ] = 0 (14) [f''(z)-k^2f(z)]=0\tag{14} [f(z)k2f(z)]=0(14)
式(14)即为二阶常系数齐次线性微分方程

| 求解式(14)的特征方程

已知:微分方程 y ′ ′ + p y ′ + q y = 0 y''+py'+qy=0 y+py+qy=0的特征方程为 r 2 + p r + q = 0 r^2+pr+q=0 r2+pr+q=0
式(14)的特征方程为 r 2 − k 2 = 0 r^2-k^2=0 r2k2=0, 则 r 1 = k , r 2 = − k r_1=k, r_2=-k r1=k,r2=k,存在两个不同的实根,因此通解结构为:
f ( z ) = ( C 1 e k z + C 2 e − k z ) (15) f(z)=(C_1e^{kz}+C_2e^{-kz})\tag{15} f(z)=(C1ekz+C2ekz)(15)
其中 C 1 , C 2 C_1, C_2 C1,C2为待定常数,通过边界条件确定
至此,微幅波的速度势函数可以表示为 Φ = ( C 1 e k z + C 2 e − k z ) s i n ( k x − σ t ) (16) \Phi=(C_1e^{kz}+C_2e^{-kz})sin(kx-\sigma t)\tag{16} Φ=(C1ekz+C2ekz)sin(kxσt)(16)
关于微幅波的线性处理和控制方程求解将在以后的帖子中分享!

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值