文章目录
0.miniconda 和 anaconda 的区别
Miniconda 和 Anaconda 都是 Anaconda 发行版提供的 Python 发行版,主要区别在于安装包的大小和预装的软件包:
Miniconda
: 是一个最小的 Python 安装包,仅包含 Python 和 conda 包管理器。安装包的大小很小(大约几十 MB)。用户需要根据需求手动安装其他所需的软件包。适用于希望从最小安装开始,自由选择所需软件包的用户。Anaconda
: 是一个大型的 Python 发行版本。安装包的大小较大(大约几百 MB)。预装了大量常用的 Python 科学计算和数据分析库,如 NumPy、SciPy、Pandas、Matplotlib 等*。适用于希望获得一个预装环境方便上手的用户,尤其是针对数据科学和科学计算领域。
总的来说,Miniconda 为用户提供了一个最精简干净的 Python 环境,让用户根据需求灵活地安装所需软件包;而 Anaconda 则提供了一个预装大量常用库的 Python 发行版,适合快速开始数据科学和科学计算工作。
两者可以并存,可以从 Miniconda 开始安装所需软件包达到类似 Anaconda 环境的效果。选择哪一种取决于你的具体需求。
1.安装anaconda or miniconda
安装anaconda
清华镜像站:针对自己的操作系统,在下载链接->应用软件->conda中选择合适版本。
安装miniconda
下载地址:按需下载,下载后在文件所在目录下 sh一下
教程:安装过程较为简单,这里略过。如果出现问题,可以参见这里。
注意: windows系统安装过程中需要注意,勾选将软件添加至windows路径(也可以手动添加,即在环境变量path中将conda.exe的文件路径添加进去),这样做是为了cmd命令可以运行conda命令。
安装完成&配置环境变量
添加环境变量(linux:vim ~/.bashrc
)
### conda
export CONDA_BASE=~/miniconda
export PATH=$CONDA_BASE/bin:$PATH
查看环境安装是否成功:
source ~/.bashrc & which conda
2.创建&管理python环境
创建一个新环境,指定依赖的包:conda create -name env_name package-name
conda create -name py3 pandas
可以指定Python版本,意味着可以建立多个拥有不同的Python版本的环境:
conda create -name py2 python=2.5
基于一个已有的环境创建(复制) --clone 参数:
conda create --name <new_env> --clone <myenv>
3. 常用命令
查看当前环境列表:conda env list
激活已创建的环境:activate env_name
退出当前激活环境:deactivate
移除删除某个环境:conda env remove -name env_name
查看已经安装的库:conda list
该命令会显示在conda中已经安装的包,包括包的名字和版本
安装某个库至环境:conda install packagename
conda install pyreadline
:安装pyreadline, pyreadline是一个基于jupyter的Python代码自动补全库,强烈推荐
conda install numpy=1.24.3
:指定安装1.24.2版本的numpy
4.导出某个环境用于共享
新电脑和当前电脑具有相同的平台和操作系统:
方法 1:
使用 conda list 命令保存当前环境的包的信息到一个txt文件
根据这个文件可以在其他电脑上进行相同环境的安装
conda list --explicit > spec-list.txt
conda create --name <new_env> --file spec-list.txt
注意:对于pip安装的某些包,可能需要单独由pip通过类似的方法生成一个包的list(pip freeze >pip-requirements.txt),在新的电脑中再通过pip来安装这些包(pip install -r pip-requirements.txt)
方法2:
利用 conda-pack 命令直接对环境进行打包,好处是打包之后得到是包文件可以直接复制到其他电脑后解压使用,不需要重新联网下载包了。具体步骤:
安装conda-pack包:conda install -c conda-forge conda-pack 或者 pip install conda-pack。
使用 conda pack 命令开始打包环境(尽量在待打包的环境之外的环境运行):conda pack -n <my_env> 这个命令会将my_env环境打包生成一个my_env.tar.gz 的压缩文件,保存在当前路径下。
复制压缩文件到新的电脑上,并解压到 anaconda的env目录下(如~/anaconda3/envs)
在env目录中创建一个文件夹如 mkdir my_env, 然后解压到目录 `tar -xzvf my_env -C ~/anaconda3/envs/my_env`
查看迁移环境是否存在:conda info -e
新电脑和当前电脑具有不同的平台和操作系统
- 导出 environment_name.yml 文件:conda env export > environment.yml
- 在新电脑上,利用生成的environment_name.yml 文件复现环境:conda env create -f environment.yml
5.强烈建议安装的包
- 基于web的代码编辑和数据分析工具 jupyter notebook
conda install jupyter notebook
- 自动关联环境依赖包(基于jupyter notebook)
conda install nb_conda
- 代码自动补全包(基于jupyter notebook)
conda install pyreadline