计算几何——求简单多边形的重心可视化实现

本文介绍了如何通过三角剖分计算简单多边形的重心,利用平面多边形的重心公式,结合三角形重心坐标和面积计算,通过向量叉积求解,证明了剖分点位置不影响面积结果,并提供了实现思路。
摘要由CSDN通过智能技术生成

这里首先给出一个公式:
平面多边形 X 可以被剖分为 n个有限的简单图形 X1,X2,…Xn,这些简单图形的重心为 Ci,面积为 Ai,那么这个平面多边形的重心点坐标为 (Cx,Cy):
在这里插入图片描述
一般来说我们可以给多边形进行三角剖分,而n个三角形的面积Ai之和即为多边形的总面积,那么这个公式可以理解为:

多边形重心横坐标 = 多边形剖分的每一个三角形重心的横坐标 * 该三角形的面积之和 / 多边形总面积
多边形重心纵坐标 = 多边形剖分的每一个三角形重心的纵坐标 * 该三角形的面积之和 / 多边形总面积

对于一个三角形,重心坐标就是((x0+x1+x2)/3,(y0+y1+y2)/3),而对于三角形的面积,我们用向量叉积来解决:S=1/2ab*sinC,这里我们采用一个外部的剖分点P。
在这里插入图片描述
三角形ABC的面积= 三角形PBC面积 + 三角形PCA面积 - 三角形PAB面积:
在这里插入图片描述
因为 向量PB 在 向量PA 的顺时针方向,所以向量PB * 向量PA < 0。
假设这四个点的坐标为:P(x0,y0), A(x1,y1), B(x2,y2), C(x3,y3),通过上面的公式进行计算,计算结果:
在这里插入图片描述
我们可以发现,计算结果中没有x0、y0的项,因为它们在计算过程中给消去了,所以我们可以得出一个结论,多边形的面积结果与剖分点的位置是无关的。那么为了计算方便,我们当然选择把这个 P点设置到原点上:现在只用两个点就行了

double curr_area = (polygon[(i + 1) % polygon.size()].x * polygon[i].y - polygon[(i + 1) % polygon.size()].y * polygon[i].x) / 2.0;

只要我们知道多边形的每一个顶点,通过原点进行剖分成多个三角形,然后通过向量的叉乘求出每个三角的面积,最后相加,就可以求出多边形的面积了。

效果:
在这里插入图片描述
最终代码:

#include <iostream>
#include <vector>
#include <map>
#include <stack>
#include <algorithm>
#include <graphics.h>
#include <time.h>
#include <conio.h>
using namespace std;
#define POINTNUM 10
struct Point
{
   
    double x;    // x坐标
    double y;    // y坐标
    double z;    // z坐标(默认为0,如果需要三维点则给z赋值)
	bool isExtremePoint;//是否为极点
	int next;//下一个极点坐标
    Point(double a = 0, double b = 0, double c = 0) {
    x = a; y = b; z = c; } // 构造函数
};
struct Triangle
{
   
  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值