AcWing 854. Floyd求最短路【最短路】【Floyd】

本文详细介绍了如何使用Floyd算法解决AcWing854题目的最短路径问题,包括算法的基本原理、核心代码实现及注意事项。通过本教程,读者可以了解Floyd算法的应用场景及其在解决复杂图论问题时的优势。
摘要由CSDN通过智能技术生成


一、题目链接

AcWing 854. Floyd求最短路


二、题目分析

(一)算法标签

最短路 Floyd

(二)解题思路


三、AC代码

解法一:

#include <iostream>

using namespace std;

const int N = 210, INF = 1e9;

int n, m, Q;
int x, y, z;

int d[N][N]; // 既是邻接矩阵, 又是存储最短路
void floyd() {
    for (int k = 1; k <= n; k ++ )
        for (int i = 1; i <= n; i ++ )
            for (int j = 1; j <= n; j ++ )
                if (d[i][j] > d[i][k] + d[k][j])
                    d[i][j] = d[i][k] + d[k][j];
}
int main() {
    cin >> n >> m >> Q;
    // 初始化邻接矩阵
    for (int i = 1; i <= n; i ++ )
        for (int j = 1; j <= n; j ++ ) {
            if (i == j) d[i][j] = 0; // 处理自环
            else d[i][j] = INF;
        }
    while (m --) {
        cin >> x >> y >> z;
        d[x][y] = min(d[x][y], z); // 处理重边, 保留权值最小的边即可
    }
    floyd();
    while (Q --) {
        int a, b;
        cin >> a >> b;
        if (d[a][b] > INF / 2) puts("impossible"); // 存在负权边, 如果a到b不存在通路, 则可能d[a][b]可能比INF稍微小一点
        else printf("%d\n", d[a][b]);
    }
    return 0;
}

四、其它题解

AcWing 854. Floyd求最短路 (附最短路总结 Dijkstra朴素+优化版+Bellman-Ford+spfa+Floyd)

AcWing 854. Floyd求最短路 动态规划方式理解

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值