一、题目链接
二、题目分析
(一)算法标签
最短路 Floyd
(二)解题思路
三、AC代码
解法一:
#include <iostream>
using namespace std;
const int N = 210, INF = 1e9;
int n, m, Q;
int x, y, z;
int d[N][N]; // 既是邻接矩阵, 又是存储最短路
void floyd() {
for (int k = 1; k <= n; k ++ )
for (int i = 1; i <= n; i ++ )
for (int j = 1; j <= n; j ++ )
if (d[i][j] > d[i][k] + d[k][j])
d[i][j] = d[i][k] + d[k][j];
}
int main() {
cin >> n >> m >> Q;
// 初始化邻接矩阵
for (int i = 1; i <= n; i ++ )
for (int j = 1; j <= n; j ++ ) {
if (i == j) d[i][j] = 0; // 处理自环
else d[i][j] = INF;
}
while (m --) {
cin >> x >> y >> z;
d[x][y] = min(d[x][y], z); // 处理重边, 保留权值最小的边即可
}
floyd();
while (Q --) {
int a, b;
cin >> a >> b;
if (d[a][b] > INF / 2) puts("impossible"); // 存在负权边, 如果a到b不存在通路, 则可能d[a][b]可能比INF稍微小一点
else printf("%d\n", d[a][b]);
}
return 0;
}
四、其它题解
AcWing 854. Floyd求最短路 (附最短路总结 Dijkstra朴素+优化版+Bellman-Ford+spfa+Floyd)