题解【acwing】854: Floyd求最短路

题目描述

点击进入题目
给定一个n个点m条边的有向图,图中可能存在重边和自环,边权可能为负数。再给定k个询问,每个询问包含两个整数x和y,表示查询从点x到点y的最短距离,如果路径不存在,则输出“impossible”。数据保证图中不存在负权回路。

思路

  1. 初始化d数组(用邻接矩阵)
  2. 调Floyd算法函数

代码

#include <iostream>
using namespace std;
const int N=210,INF=1e9;

int n,m,q;
int d[N][N];

void floyd()
{
    for(int k=1; k<=n; k++)
        for(int i=1; i<=n; i++)
            for(int j=1; j<=n; j++)
                d[i][j]=min(d[i][j],d[i][k]+d[k][j]);
}

int main()
{
    cin>>n>>m>>q;
    for(int i=1; i<=n; i++)
        for(int j=1; j<=n; j++)
        {
            if(i==j) d[i][j]=0;
            else d[i][j]=INF;
        }
    
    while(m--)
    {
        int a,b,w;
        cin>>a>>b>>w;
        d[a][b]=min(d[a][b],w);
    }
    
    floyd();
    while(q--)
    {
        int a,b;
        cin>>a>>b;
        if(d[a][b]>INF/2) puts("impossible");
        else cout<<d[a][b]<< endl;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值