洛谷 P4779 【模板】单源最短路径(标准版)【最短路】【堆优化版Dijkstra】


一、题目链接

洛谷 P4779 【模板】单源最短路径(标准版)


二、题目分析

(一)算法标签

最短路 优先队列 堆优化版Dijkstra

(二)解题思路

出队时修改st数组


三、AC代码

解法一:

#include <iostream>
#include <cstring>
#include <algorithm>
#include <climits>
#include <queue>

using namespace std;

typedef pair<int, int> PII;
#define x first
#define y second

const int N = 1e5 + 10, M = 2e5 + 10;

int h[N], w[M], e[M], ne[M], idx;

void add(int a, int b, int c)
{
    e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx ++ ;
}


int n, m, s;
int a, b, c;
bool st[N];
int dist[N];

void dijkstra()
{
	// 两种方式都行
    // memset(dist, 0x3f, sizeof dist);
    for (int i = 1; i <= n; i ++ )
        dist[i] = INT_MAX;
    dist[s] = 0;
    
    priority_queue<PII, vector<PII>, greater<PII>> heap;
    heap.push({0, s});
    
    while (!heap.empty())
    {
        auto t = heap.top();
        heap.pop();
        
        int ver = t.y, distance = t.x;
        
        if (st[ver]) continue;
        st[ver] = true;
        
        for (int i = h[ver]; ~i; i = ne[i])
        {
            int j = e[i];
            if (!st[j] && dist[j] > distance + w[i])
            {
                dist[j] = distance + w[i];
                heap.push({dist[j], j});
            }
        }
    }
}

int main()
{
    memset(h, -1, sizeof h);
    cin >> n >> m >> s;
    for (int i = 0; i < m; i ++ )
    {
        scanf("%d%d%d", &a, &b, &c);
        add(a, b, c);
    }
    
    dijkstra();
    for (int i = 1; i <= n; i ++ )
        // if (dist[i] == 0x3f3f3f3f) cout << INT_MAX << endl;
        cout << dist[i] << ' ';
    return 0;
}

四、其它题解

洛谷 P4779 【模板】单源最短路径(标准版)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值