1、调查背景
近年来,智能运维正成为企业高效管控种类繁多数量庞大的物理设备、精准定位故障信息、实时防护网络攻击、快速迭代需求变更等新时代运维场 景下不可或缺的科技力量和解决方案。
2、AIOps场景应用情况
AIOps仍处于初期发展阶段,受访者对目前AIOps能力水平的评价与期望超过其所在企业实际应用的情况。 • 从整体来看,30.27%的企业自评目前处于辅助智能化运维阶段,28.61%的企业自评处于进阶智能化运维阶段。
智能运维在质量、成本、效率、安全四大运维领域均已开展部署和应用,其中质量领域最为关注。 • 调查显示,54.79%的企业当前着重关注智能运维的质量领域(包括异常检测、告警收敛、根因分析、 故障处置等)能力建设,其次45.77%的企业关注效率领域,45.49%的企业关注成本领域,30.82%的 企业关注安全领域。
大部分企业在数据分析和算法模型分析方面已经逐步开始场景探索。并且已有15.61%和11.07%的受访者 所在企业将数据分析方法和算法模型应用与大部分业务场景。
3、AIOps能力成熟度模型
根据由中国信通院牵头制定的行业标准《云计算智能化运维 (AIOps)能力成熟度模型 第1部分:通用能力要求》中的AIOps 能力建设分级要求,可以将智能化运维整体能力从感知、分析、 决策、执行、知识更新五个维度进行级别划分,系统的参与程 度随智能化程度逐级递增,并结合智能运维应用场景特点,形 成AIOps能力成熟度模型。