智能化运维(AIOps)

1、调查背景

近年来,智能运维正成为企业高效管控种类繁多数量庞大的物理设备、精准定位故障信息、实时防护网络攻击、快速迭代需求变更等新时代运维场 景下不可或缺的科技力量和解决方案。

2、AIOps场景应用情况

AIOps仍处于初期发展阶段,受访者对目前AIOps能力水平的评价与期望超过其所在企业实际应用的情况。 • 从整体来看,30.27%的企业自评目前处于辅助智能化运维阶段,28.61%的企业自评处于进阶智能化运维阶段。

智能运维在质量、成本、效率、安全四大运维领域均已开展部署和应用,其中质量领域最为关注。 • 调查显示,54.79%的企业当前着重关注智能运维的质量领域(包括异常检测、告警收敛、根因分析、 故障处置等)能力建设,其次45.77%的企业关注效率领域,45.49%的企业关注成本领域,30.82%的 企业关注安全领域。

大部分企业在数据分析和算法模型分析方面已经逐步开始场景探索。并且已有15.61%和11.07%的受访者 所在企业将数据分析方法和算法模型应用与大部分业务场景。

3、AIOps能力成熟度模型

根据由中国信通院牵头制定的行业标准《云计算智能化运维 (AIOps)能力成熟度模型 第1部分:通用能力要求》中的AIOps 能力建设分级要求,可以将智能化运维整体能力从感知、分析、 决策、执行、知识更新五个维度进行级别划分,系统的参与程 度随智能化程度逐级递增,并结合智能运维应用场景特点,形 成AIOps能力成熟度模型。

无人化运维AIOPS人工智能运维)是一种利用人工智能技术完成运维工作的方式。传统的运维工作通常需要人工介入进行监控、故障排除和资源管理等任务,而AIOPS的出现则很好地解决了这个问题。 无人化运维AIOPS利用机器学习和数据分析算法,能够实时监测和分析系统运行情况。它可以从庞大的数据中识别出异常事件,并给出相应的处理建议。AIOPS能够自动化执行常见的操作,比如自愈、负载均衡等,提高了运维效率和稳定性。 AIOPS还能够智能预测和预防潜在故障,减少系统突发故障对业务的影响。通过对历史数据的分析,AIOPS可以找出隐藏的系统缺陷和瓶颈,并提出相应的优化措施。这也有助于提前进行容量规划和资源调配,保障系统的高效稳定运行。 无人化运维AIOPS还可以对运维工作进行自动化和大规模的集中管理。它能够集成各类监控工具和管理系统,并对其进行统一监控和管理,节省了运维人员的时间和精力。同时,AIOPS还可以对运维过程中产生的大量日志进行分析和整理,提供有价值的信息供运维人员参考。 总之,无人化运维AIOPS的出现是运维领域的一次技术革新。它实现了运维工作的自动化、智能化和高效化,提升了系统的稳定性和可用性,降低了运维成本和人力资源的浪费。在未来,AIOPS有望成为运维工作的重要组成部分,对促进企业的数字化转型和业务发展起到积极的推动作用。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值