AIOps是什么?智能化IT运维的未来

一、AIOps 究竟是什么?

3cee76fffa9aaff3f9d9a6c1234a01ba.jpeg

(一)定义与概念简述

AIOps 是人工智能运维(Artificial Intelligence for IT Operations)的缩写,它是将人工智能和机器学习技术引入 IT 运维领域,用于改善和优化 IT 运维的过程和结果的一种方法。通过运用这些先进技术,AIOps 能够帮助企业更高效地管理和维护其 IT 系统,使其不再局限于传统的、依赖大量人工监测和管理的运维模式,进而提升运维的整体效率与质量,为企业的数字化运营提供有力保障。

(二)传统 IT 运维的困境

传统的 IT 运维通常需要人工去监测和管理大量的系统日志、性能指标、事件以及警报等信息,以此来确保系统可以正常运行,并且在故障出现时能够尽快解决。然而,随着企业规模不断扩大,业务复杂性日益提高,这种传统的运维方式逐渐暴露出诸多问题。比如,当公司业务量急剧增长时,一旦重大故障发生,各种信息和蜂拥而至的警报同时出现,运维人员要从成千上万条信息里筛选出有用的、过滤掉重复的,或者找出问题根源,是极为困难的事情。而且庞大的数据流使得运维人员工作量剧增,即便进行 7*24 小时的监控,有时也很难排查出问题所在,这不仅影响业务增长,也会降低用户体验。此外,业务系统往往涉及众多的服务器、服务、应用、数据库和网络设备,缺乏统一的综合运维管控平台以及性能监控可视化平台,导致运维难度加大、成本升高。所以,传统运维方式面对当下的发展形势,显得愈发繁琐且效率低下,急需一种更高效的运维方法出现,而 AIOps 应运而生。

(三)AIOps 的具体作用

AIOps 能够收集、分析海量的运维数据,帮助运维团队更好地理解系统行为模式。例如,它可以通过机器学习算法,对长时间积累的系统运行数据进行深度挖掘,找出其中隐藏的规律和关联性,像哪些操作容易引发系统资源占用过高等情况。在检测异常方面,AIOps 能够实时监控各种数据指标,一旦数据出现偏离正常模式的情况,就能迅速发出警报,比如在网络流量突然异常增大或者服务器响应时间过长时及时提醒运维人员。而且,它还能预测潜在问题,基于历史数据和实时数据的综合分析,提前预判可能出现的故障,像预测某硬件设备在使用一定时长后可能出现性能下降等情况,以便运维团队提前采取措施。

同时,AIOps 可以自动化多项运维任务,比如自动化日志分析,快速从海量日志中提取关键信息;事件管理方面能自动对事件进行分类、优先级排序;故障诊断上辅助运维人员更快定位问题根源;性能优化时能依据数据分析给出合理的资源调配建议;容量规划中预测未来业务增长所需的资源量等。其带来的好处也是显而易见的,能够提高故障响应速度,在故障发生的第一时间就通知相关人员并提供初步解决方案,降低故障的影响范围,避免故障扩散影响更多业务模块,增强系统的稳定性和可靠性,保障业务的持续正常运行,还能提高运维团队的工作效率,让运维人员从繁琐的重复性工作中解脱出来,专注于更具价值的运维事务,提升资源利用率,合理分配硬件、软件等资源,避免资源浪费。

(四)与人类运维团队的关系

AIOps 并非是要取代人类运维团队,而是与之紧密协作的关系。人工智能和机器学习算法虽然具备强大的数据处理和分析能力,能够处理大规模的数据分析以及自动化执行很多任务,但它们缺乏像运维人员所拥有的领域知识、对业务场景的深刻理解以及丰富的实践经验等。比如在一些特殊业务场景下,对于系统出现的异常情况,需要运维人员依据过往类似问题的处理经验以及对业务逻辑的把握,来判断问题的性质和影响范围。

而运维团队则可以利用 AIOps 提供的智能化分析结果、实时监测数据以及自动化操作等,更高效地开展运维工作,为决策提供有力支持。例如,AIOps 检测到某个服务器性能指标异常并给出可能的原因及解决方案建议,运维人员在此基础上结合实际情况进行核实和最终决策,然后执行相应的修复操作。二者相互结合、相辅相成,从而能够实现更高效、智能、可靠的 IT 运维管理,共同应对复杂多变的 IT 运维挑战,保障企业的数字化系统稳定、高效运行。

二、AIOps 与 DevOps 的区别与联系

69681d216944283ada36d45b1463a065.png

(一)目标和重点差异

AIOps 与 DevOps 有着不同的目标和重点方向。AIOps 主要聚焦于利用人工智能和机器学习等先进技术,来改善和优化自动化的 IT 运维工作。比如,它致力于提高在故障检测、诊断以及处理等方面的速度与准确性,通过智能分析海量的运维数据,迅速定位问题所在,并能及时给出合理的解决方案,从而保障 IT 系统的稳定运行。

而 DevOps 的核心目标则是实现软件开发和运维工作之间的紧密协作与整合,侧重于打造一套高效的流程和机制,促使软件能够以更快的速度、更高的质量进行交付。例如,通过实施 “持续集成”(CI)与 “持续交付”(CD)等方法,让开发团队与运维团队之间打破壁垒,形成良好的沟通与合作关系,使得软件更新能够更加频繁且可靠,更好地满足用户不断变化的需求。

(二)范围和应用领域不同

从应用范围和领域来看,AIOps 主要应用于 IT 运维这个特定的领域当中,重点关注的是系统的监测、故障处理、性能优化等与运维紧密相关的环节。它通过收集和分析如服务器日志、网络流量数据、系统性能指标等运维数据,运用智能算法来挖掘其中有价值的信息,进而实现对 IT 系统的有效管理和维护。

DevOps 则贯穿于整个软件开发生命周期的各个环节,涵盖了从代码编写、测试、部署,再到运维以及后续的持续改进等一系列过程。它旨在构建一个协同的生态系统,让参与软件开发和运维的各个角色能够无缝对接,共同推动软件项目顺利进行,确保软件产品从构思到上线,再到后续运营都能高效、稳定。

(三)技术和方法区别

在技术和方法的运用上,AIOps 侧重于借助人工智能、机器学习这些前沿技术,对大量的运维数据进行深度分析,进而做出智能化的决策,并实现自动化的操作。例如,通过机器学习算法对历史运维数据进行学习,建立起故障预测模型,提前预判可能出现的系统故障;或者利用自然语言处理技术,对运维文档等文本信息进行智能分析,辅助运维人员更快地理解和解决问题。

DevOps 则更注重通过流程的优化、工具的整合以及文化的变革等方式,来实现开发与运维团队之间的高效协作。像使用持续集成工具,让代码提交后自动触发构建和测试流程,减少人为干预导致的错误;利用自动化部署工具,确保软件能够快速、稳定地部署到生产环境中;同时倡导一种共享责任、开放沟通的团队文化,打破部门之间的隔阂。

(四)二者的关联性

尽管 AIOps 和 DevOps 有着诸多的区别,但它们并非相互排斥的关系,在实际的应用场景中,二者可以相互补充、有机结合,从而发挥出更大的作用。

DevOps 所搭建的良好协作框架以及高效的软件交付流程,能够为 AIOps 提供丰富且高质量的数据来源,这些数据可以作为 AIOps 进行智能分析和决策的基础。而 AIOps 凭借其智能化的运维能力,又可以帮助 DevOps 更好地应对复杂的运维场景,比如快速定位和解决软件在运行过程中出现的问题,优化系统性能,提高整体的运维效率,保障软件的持续稳定运行,进一步提升 DevOps 实践的效果,助力企业在软件开发和运维方面都能达到更高的水平。

三、AIOps 的应用领域实例展示

(一)发现问题

在 IT 运维领域,基于机器学习的异常检测发挥着重要作用,为及时发现问题提供了更高效精准的途径。

以监控数据为例,传统方式往往是设置固定的异常阈值来判断系统是否出现问题,然而这种方式存在诸多局限。比如,在业务发展的不同阶段,像业务拓展期、特殊节假日或者日常的业务高低峰时段,指标的波动情况会有很大差异,简单的阈值设定很难适应这些变化,容易出现漏报或者误报的情况。

而基于机器学习的异常检测则可以有效规避这些问题。它能够依据历史数据进行学习,构建出相应的检测模型,这些模型可以覆盖大多数曲线类型,无论数据呈现出怎样的变化趋势,都能较好地适应业务生命周期中的各种变化,从而更及时准确地发现异常情况。例如在云音乐核心指标的监控应用中,此前依托人工阈值设置的方式来进行数据质量的全链路监控,准确性就会强依赖于人工阈值设置的合理性,在业务不同阶段或时间周期下,指标波动特点不同时,人工阈值缺乏普适性,像固定阈值设置太宽,容易漏报异常情况;设置太紧,又会导致误报严重,且无法感知业务的一些动态变化,如缓慢持续变化趋势、节假日效应等。但通过采用如 XGBoost 等机器学习算法,能对指标异动进行分析预测,其表现明显优于传统的固定阈值方式,能找出更多的异常点并且错报更少,大大提升了指标异动发现的准确性。

所以,利用机器学习的异常检测在发现问题方面,相较于传统手段展现出了极大优势,能够助力运维人员更早察觉系统潜在问题,为后续的运维处理争取更多时间,保障业务平稳运行。

(二)根因分析

在故障处理中,精准定位故障根源及原因是至关重要的,基于机器学习的故障树挖掘技术就为此提供了有力支持,实现了精准的根因分析与定位。

当业务出现异常时,往往涉及多个指标,要从众多指标检测的异常情况里确定到底是哪个指标导致的故障发生并非易事。而基于机器学习的故障树挖掘,可以通过对大量历史故障数据以及相关指标数据进行学习分析,构建起故障树和知识图谱。例如,当系统出现多指标异常时,它能够依据已构建好的故障树和知识图谱,梳理各个指标之间的关联关系以及因果逻辑,沿着可能的线索逐步排查,先实现对故障的精准定位,判断出具体是哪个环节、哪个指标出现了问题,然后进一步深入分析,准确找出故障发生的根源以及深层次原因。

这样一来,运维人员就不再需要盲目地去猜测或者逐一排查众多可能的因素,而是可以在故障树挖掘和知识图谱所提供的清晰指引下,快速聚焦关键问题所在,有针对性地采取修复措施,极大地提高了故障处理的效率,减少因故障排查时间过长对业务造成的影响。

(三)预测未来

基于机器学习模型的指标预测应用在 IT 运维中有着广泛且重要的用途,它可以对不同级别粒度的数据进行预测,提前为运维工作提供参考和决策依据。

运用多种回归和统计方法,像是线性回归、时间序列分析等机器学习算法,能够基于历史数据来对未来业务指标进行预测。例如,在电商行业的大促活动如双 11 期间,业务对组件容量和资源容量有着很高的要求,通过机器学习模型对过往类似活动期间的数据进行分析学习,就可以提前预测出不同业务模块所需要的组件容量、资源容量等情况,以便运维团队提前做好相应的资源调配和扩容准备,保障活动期间系统的稳定运行,避免因资源不足而出现系统卡顿、崩溃等问题。

同时,对于一些业务指标,如日活用户数、交易量等常规指标,也能通过模型进行持续的趋势预测,及时发现潜在的风险和变化趋势,提前制定应对策略。而且除了业务指标外,还可以对系统的容量等方面进行预测,从整体上把控 IT 系统的运行态势,让运维工作从被动响应转变为主动预防,进一步提升运维的质量和效率,更好地支撑业务的发展。

(四)IT 辅助决策支持

深入运营场景实现 IT 辅助决策应用,是 AIOps 在助力企业运营管理方面的重要体现,涵盖了营收预测、舆情分析预测等多个关键领域。

以营收预测为例,通过收集和整合大量与业务营收相关的数据,如历史销售数据、市场趋势数据、用户行为数据等,运用机器学习算法进行分析挖掘,找到其中隐藏的规律和关联因素,进而构建起营收预测模型。这个模型可以根据当前的业务开展情况以及市场动态等信息,对未来一段时间内的营收情况进行预估,帮助企业提前规划资源配置、制定营销策略等。

在舆情分析预测方面,借助自然语言处理等机器学习技术,对来自社交媒体、新闻资讯、用户评论等渠道的文本信息进行实时监测和分析,判断舆情的走向是积极、消极还是中性,预测可能出现的舆情热点以及对企业形象、业务的影响程度,使得企业能够及时采取措施进行应对,引导舆论方向。

从算法层面来看,在早期训练数据集和反馈数据量比较少的情况下,可以采用无监督学习,具体是用模式识别(pattern recognition)的技术来判断指标是否关联,通过计算时间序列曲线相似度(similarity distance)来衡量关联性,像利用欧几里德距离(Euclidean Distance)、曼哈顿距离(Manhattan Distance)、明科斯基距离(Minkowski Distance)等机器学习算法库提供的算法来实现。而当有了足够的数据集以后,就可以演化运用监督学习、随机森林(Random Forrest)、GBDT (Gradient Boosted Decision Tree) 、神经网络(Neutal Network)等更强大的算法,不断提升辅助决策的准确性和可靠性,为企业的运营发展提供有力的决策支持保障。

四、智能化 IT 运维的未来发展趋势展望

c23802aec3a780c81e31a70685edca31.jpeg

(一)AIOps 由算法引领走向价值引领

在 AIOps 领域,单纯探讨算法原理或堆砌专业名词的时代已经一去不复返了。如今,算法不仅要在学术研究层面产生影响力,更重要的是要在客户真实的运营场景下,切实解决实际问题,持续为客户创造价值。

对于众多企业客户而言,AIOps 经过这些年的发展,已经逐渐从一个抽象的概念名词落地到具体的应用场景之中。像一些知名互联网企业以及部分金融企业,就是因为持续关注人工智能算法落地效果,已经在生产运营过程中收获了实实在在的价值。

展望未来,AIOps 将步入价值引领的新阶段。但在这个过程中,也需要不断应对实际落地时面临的诸多挑战。例如,不同行业与地域之间发展不均衡,导致对 AIOps 的需求与应用存在差异等情况。在落地实践里,企业不仅要对智能运维的算法场景进行统一的抽象提炼,还得依据不同的业务场景去适配相应的算法,以此满足不同客户时刻变化的需求,真正让 AIOps 为客户带来实际的业务价值。

(二)AIOps 由 “单场景” 走向 “多模态”

在云智慧看来,AIOps 目前呈现出的一个极具吸引力的趋势,就是对融合多个运维观测量工具的持续需求以及相关应用在不断增加。当下,市面上许多可用的 AIOps 工具平台,往往一次只能处理一种数据类型,比如指标、日志或者调用链等。这就意味着企业若要实现 AIOps,就必须同时使用多个工具,并且对这些工具所观测到的数据进行整合,才能完成既定的运维任务。

事实上,AIOps 诞生的初衷本就是为了解决运维过程中的各类实际问题,像故障定位、根因分析以及故障修复等等。仅仅依靠单观测量形成的场景,是没办法形成完整的运维价值闭环的。举个例子来说,在单指标异常检测场景下,如果只是单纯自动发现指标中的各种异常情况,其实并不能达成最终的运维价值。真正完整的价值链路应该是通过单指标异常检测算法找到问题所在,接着利用根因分析算法精准定位问题,最后借助自动化工具去解决问题,这样才构成了一条完整的 “AIOps 价值链”。

经过对行业实践以及客户实际应用场景的深入理解,云智慧将这种多观测综合价值链称之为 “多模态” AIOps。在 2021 年的时候,就已经观察到不少融合多个观测量工具平台实施的案例,这很可能会发展成为 AIOps 领域一个显著变化的新趋势。比如通过单个应用程序或工具,一次性就能处理多种数据类型,允许这些工具查看所有给定的数据(涵盖指标、日志、事务、事件等等),同时还能分析它们之间是如何相互关联和交互的,进而帮助企业减少警报噪音。最为关键的是,从实际的案例实施结果来看,“多模态” AIOps 最终能够助力企业增加收益,并且降低运行成本。

(三)疫情促使 AIOps 能力提升

随着新型冠状病毒疫情的不断发展以及 “奥密克戎” 病毒的快速传播,整个社会的防疫工作面临着全新的挑战。在此背景下,政府和企业都在积极部署更多的硬件和软件,以此提升数字化管理水平,这无疑对 IT 系统提出了更高的要求,同时也给企业的生产经营带来了新的压力。

但不可否认的是,疫情在客观上成为了 AIOps 能力提升的催化剂。正常情况下,除了少数像 “抢票” 这样的特殊场景外,用户对 IT 系统的响应容忍度一般是在 “分钟” 级别,甚至在一些低频使用场景中,“小时” 级别的响应时长也可以满足基本需求。然而疫情的出现改变了这一状况,传统的低频场景必须迅速升级为高频场景,用户的忍耐时间被大大缩减。例如城市 “健康码” 在日常应用中,一旦出现打不开(无响应)的情况,那就意味着人们无法正常工作和生活,所以用户对于响应时间有了 “秒” 级的严苛需求。并且如果不及早对系统进行全链路压测,很有可能在高频需求下出现系统崩溃的状况。

正因如此,政府或企业对 AIOps 实施的需求一直在持续增加。它们希望借助 AIOps 的算法能力,保障 IT 系统运行的安全与稳定,同时提升管理的整体效率,降低在疫情管控背景下的运行成本。而且随着人们对数字化系统建设需求的进一步升级,大家也会越来越习惯高水平的数字化管理手段,这也会进一步推动对 AIOps 落地实施提出更高的要求。

(四)AIOps 将成为数字化转型的重要保障

近年来,数字化转型政策给企业发展带来了诸多变化,在此过程中,运维系统也面临着各种各样的挑战。像是异常告警中常常出现的高误报和高漏报现象、根因分析环节对专家经验过度依赖、故障自愈全流程难以打通等等现状,这些都致使企业整个运维体系的自动化和智能化程度不太理想。

不过,随着 AIOps 在各个细分行业领域里日益走向成熟,在多种数据与不同平台实现有机融合的基础上,不断迭代升级的算法与应用,使得 AIOps 能够为企业提供更准确的告警信息以及更自动化的根因分析结果,让整个运维流程变得自动且高效,从而为更多企业的数字化转型保驾护航,成为其重要的保障力量。

(五)AIOps 将促进 DevOps 工具的发展

如今,基础设施管理日益复杂,云监控也面临着更高的要求,所以更需要安全可靠的解决方案与保障。云智慧在为客户提供自动化的数据分析以及日常的 DevOps 操作过程中发现,近年来 AIOps 的蓬勃发展,为 DevOps 工具的升级提供了重要保障。

传统的系统监控工具面对数据总量庞大、数据类型繁多、数据处理速度要求快等情况时,往往显得力不从心。而高级分析工具、人工智能算法以及深度学习模型的出现,让 DevOps 专业人员能够有效改善这一局面。AIOps 平台可以通过快速处理所有相关数据、执行深度数据分析以及自动化日常任务等方式,帮助 DevOps 工程师在对运维系统进行监控和管理时更加得心应手,进而能够更好地测试系统性能和保障系统安全。

五、AIOps 在不同行业的成功应用案例分享

dd857e48efbbfc199d1cc86c9b429ead.jpeg

(一)航空行业案例

在航空行业,有这样一个典型案例。一家航空行业的客户,其业务开展过程中,每天有多达 600 个业务应用系统(涵盖售票系统、退票系统、进仓系统、订单查询系统等等)在运行,这些系统会产生海量的日志数据,仅仅 2 个小时就能产生 7TB/10 亿条的增量数据,数据量极为庞大。而客户有着对海量数据进行实时分析,及时察觉业务波动并做出预警的需求,并且该需求有着数据量大、指标复杂度高、实时性要求严苛(需在 1 分钟之内完成数据的采集、分析、呈现)等特点。

云智慧从 2019 年开始为这家客户提供服务,为其打造了业务运营实时监控分析平台。通过运用分布式大数据处理、内存计算等先进技术,实现了每秒 10 万条的并发数据实时分析处理,并且能做到秒级告警处理,这极大地保障了数据处理的及时性和高效性。同时,借助深度学习、时序预测等算法,使得预测的准确率得到了大幅度的提升,预测结果与实际情况的偏差仅有 3%,真正达到了帮助客户处理海量日志数据,实现实时分析、精准预警等目标,为航空业务的稳定运行保驾护航。

(二)金融行业案例

某金融行业客户,作为数字化步伐较快的大型金融机构,在国内拥有 3 个数据中心,600 个业务应用系统,还有上万台物理设备,其系统之间的调用关系错综复杂,并且部分核心业务之间存在着很强的依赖关系。这些应用系统每天产生海量的日志数据以及告警信息,导致对日志报文数据的处理分析时效性差、效率低下,IT 整体运维效率已经成为制约企业数字化发展的一大阻碍。

针对这一情况,云智慧凭借过去多年在监控宝、透视宝、压测宝等产品上积累的技术与经验,为其建立起了业务与 IT 的统一视图。通过这一举措,厘清了各类指标数据、日志数据以及事件数据之间内在的关联关系,并展开统一的建模和分析。在此基础上,云智慧的智能业务运维平台助力这家客户实现了关键业务指标和体验指标的预测以及异常检测,有效地提升了业务运营和 IT 管理的效率,初步达成了 IT 运营的数字化和智能化,让该金融企业的运维工作更加顺畅、高效,更好地应对复杂的业务需求。

(三)药企行业案例

药企行业中有这样一位客户,其拥有近 10 个面向各类客户的线上产品和办公系统,随着业务快速发展,在全国范围内建设了 3 个数据中心,物理设备数量也达到上万台。然而,在日常运维中,该客户面临着 “告警风暴” 这一棘手问题,也就是当 IT 故障发生时,多个系统会同时发出告警,使得运维人员陷入巨大的困扰之中,故障处理效率也大幅降低。

这时 AIOps 发挥了关键作用,通过智能分析和处理,能够对众多告警信息进行筛选、关联分析等操作,不再让运维人员面对海量且无序的告警不知所措。它可以梳理出真正关键、有效的告警,精准定位故障所在,快速找到问题根源,从而帮助企业提升故障处理效率,确保药企相关线上业务以及办公系统能够稳定运行,减少因故障处理不及时对业务造成的不良影响,保障药企运营的连续性和稳定性。

六、总结与展望

e6fd9740f542c1bd771d8c5be782bdce.jpeg

(一)AIOps 的重要性总结

AIOps 在智能化 IT 运维领域扮演着举足轻重的角色,有着多方面的关键作用和价值,也给当前运维领域带来了深刻的改变。

首先,AIOps 极大地提升了运维效率。传统运维方式依赖大量人工去处理诸如系统日志、性能指标等繁杂信息,面对海量数据和复杂业务场景时,效率低下且易出错。而 AIOps 通过自动化收集、分析运维数据,能快速从海量信息中提取关键内容,自动化执行多项任务,像自动化日志分析、事件分类排序等,让运维人员从重复性工作中解脱出来,有更多精力聚焦于更具价值的运维事务,大大提高了整体的运维效率。

其次,AIOps 增强了故障处理能力。它能够实时监控各种数据指标,运用机器学习算法精准检测异常情况,一旦出现问题能迅速发出警报,还可基于历史数据和实时数据综合分析来预测潜在故障,提前为运维团队提供预警。在故障发生后,又能辅助运维人员快速定位问题根源,比如通过构建故障树、知识图谱等助力精准根因分析,减少故障排查时间,降低故障对业务的影响范围,保障业务的持续正常运行,提升了系统的稳定性和可靠性。

再者,AIOps 优化了资源配置。通过对运维数据的深度挖掘和分析,它可以依据业务实际需求,合理规划硬件、软件等资源的分配,避免资源浪费,提高资源利用率,使企业在保障业务发展的同时,有效控制运维成本。

从对运维领域的改变来看,AIOps 促使运维工作从传统的被动响应模式逐渐向主动预防模式转变,不再只是等故障出现后再去解决,而是提前预判、提前布局。同时,它也推动了运维团队与其他业务部门之间更好地协同合作,因为其提供的准确数据和智能分析结果,能让各部门基于更科学的依据去开展工作,共同助力企业数字化运营的高效推进。

(二)对未来发展的期待

展望未来,AIOps 有着令人期待的广阔发展前景,在诸多方面有望实现新的突破和拓展。

在应用场景方面,AIOps 将覆盖更多的业务领域。如今它已经在航空、金融、药企等行业展现出强大的应用价值,未来有望深入到诸如制造业、教育业、医疗业等更多行业中,针对不同行业的独特运维需求,发挥其智能化优势,助力各行业优化 IT 运维,提升数字化运营水平。例如在制造业中,帮助监控生产线上各类设备的运行状态,提前预测设备故障,保障生产流程不间断;在教育行业,保障线上教学平台的稳定运行,为师生提供良好的教学体验等。

在技术融合上,AIOps 会与更多新兴技术相结合,创造出更强大的运维能力。它可能与区块链技术融合,增强数据的安全性和可信度,确保运维数据不被篡改且来源可靠;与物联网技术协同,实现对海量物联网设备的智能运维管理,实时监控设备状态、收集运行数据并及时反馈分析结果;和边缘计算结合,在靠近数据源的边缘侧进行数据处理和分析,减少数据传输延迟,更快地响应本地设备的运维需求等,通过这些技术融合不断拓展自身的功能边界。

我们也期待 AIOps 能够进一步降低使用门槛,让更多的企业,尤其是中小微企业能够轻松应用。通过更简洁易用的平台界面、更完善的配套服务和更具性价比的方案,使不同规模和技术水平的企业都能享受到智能化 IT 运维带来的便利和价值,推动整个行业的数字化转型步伐。

在此,希望广大读者能够持续关注 AIOps 的发展动态,积极将其应用到实际工作中,共同迎接智能化 IT 运维的新时代,让其为企业的发展和数字化建设注入源源不断的动力,创造更多的价值和可能。

36d8e8d8d9b696c9aa9a56a34d14fed5.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值