复杂网络.

平均度:所有节点的度相加除以节点数或者图中的连边数*2除以图中的节点数

度分布:将网络中节点的度值从小到大排列,统计度值为k的节点占整个网络节点数的比例p(k),即p(k)=Nk/N.Nk是度为k的节点数目,N为网络中的节点总数

离散型变量表述:pk,一个节点的度值为k的概率
连续型变量表述:p(k) 节点的度的概率密度函数
从k1到k2对p(k)进行关于k的积分表示一个节点的度值介于k1和k2之间的概率

归一化条件:
pk求和为1,从kmin到无穷对p(k)进行积分为1,kmin表示网络所有节点的度值中的最小值

网络的直径:网络中任意两点间的最短距离的最大值
平均路径长度:任意两点间的最短距离的平均值
介数:任意一对节点间最短路径所经过的次数
点介数:最短路径经过该点的次数;
边介数:最短路径经过该边的次数;
介数反映了相应的节点或边在整个网络中的作用和影响力,是一个全局几何量;

集聚系数Ci:节点的邻居节点之间之际存在的边数和总的可能存在的边数之比(包含节点i的三角形数目/以节点i为中心的连通三元组数目)

网络的集聚系数C就是平均集聚系数:所有节点的集聚系数/节点个数
网络的传递性T=网络中三角形数目/(网络中连通三元组的数目/3)
T的范围0小于T小于1;如果任意两个节点有连接,则T=1,如果没有三角形连接,则T=0

网络的稀疏性:网络的稀疏程度定义为网络中实际存在的边数与最大可能的边数之比:<k>=L/Lmax
连通(无向图)图:网络中的任意两个节点之间都至少存在一条路径
最大连通集团:含有节点数最多的连通子图
对于不连通网络的邻接矩阵,所有的非零元素都存在于沿着矩阵对角线排列的一些方块中,其余部分元素均为0

度相关性:

同配 度大节点倾向于连接度大节点
异配 度大节点倾向于连接度小节点
中性 节点间的连接与它们自身的度值无关

度量网络的度度相关性

1可视化描述

ejk网络中随机选择的一条边的两个端点的度分别为j和k 的概率
∑ j k e j k = 1 \sum_{jk} e_{jk}=1 jkejk=1 ∑ j e j k = q k \sum_j e_{jk}=q_k jejk=qk
q k q_k qk是网络中随机选取的一条边的端点的度为k的概率
其中 q k = k p k / < k > q_k=kp_k/<k> qk=kpk/<k> \quad q k = C k p k q_k=Ckp_k qk=Ckpk,C是归一化常数, C = 1 / < k > C=1/<k> C=1/<k>
如果网络不具有度相关 e j k = q j q k e_{jk}=q_jq_k ejk=qjqk,计算 e j k e_{jk} ejk,并对其可视化,观察 e j k e_{jk} ejk的分布,判断网络的度度相关性

2度相关函数

平均邻居都 k n n ( k ) k_{nn}(k) knn(k):度为k的节点的邻居节点的平均度
k n n ( k ) = a k μ k_{nn}(k)=ak^\mu knn(k)=akμ
μ > 0 \mu>0 μ>0对应同配 μ < 0 \mu<0 μ<0对应异配 μ = 0 \mu=0 μ=0对应中配

3度相关系数

如果网络是度相关的, e j k e_{jk} ejk将不等于 q j q k q_jq_k qjqk,可以考虑用 < j k > − < j > < k > <jk>-<j><k> <jk><j><k>的差值大小来刻画网络同配或异配的程度,即
< j k > − < j > < k > = ∑ j k j k ( e j k − q j q k ) <jk>-<j><k>=\sum_{jk} jk(e_{jk}-q_jq_k) <jk><j><k>=jkjk(ejkqjqk)
差值为正,同配,差值为负,异配,差值为0,中配
使用度相关系数进行求时需要归一化求r

4皮尔逊相关系数

取出网络中所有连边,计算每条连边两端节点的度值,并将其按从小到大排序,得到度小序列和度大序列,最后计算它们的皮尔逊相关系数p。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值