关于复杂网络的一些基础概念

1 度(Degree)1

在图论中,一个节点在图中的度 (degree)是与这个节点相连接的边的数目。给定一个图 G = ( V , E ) G=(V,E) G=(V,E),其度求和公式为:

∑ v ∈ V deg ⁡ ( v ) = 2 ∣ E ∣   . {\displaystyle \sum _{v\in V}\deg(v)=2|E|\,.} vVdeg(v)=2E.

对于有向图

  • 节点的入度是指进入该节点的边的条数。

  • 节点的出度是指从该节点出发的边的条数。

另外,度为0的顶点称为孤立节点度为1的节点称为叶节点端点,与端点相关联的边称为悬挂边。有n个顶点的图中度为n-1的顶点称为全连接节点

2 节点强度(Node strength)2

节点强度:是指连接到节点的边的权重的总和

对于有向图内强度为进入该节点的边的权值之和;而外强度则为从该节点出发的边的权值之和。

3 平均路径长度(Average path length)3

平均路径长度也称为特征路径长度平均最短路径长度,指的是一个网络中两点之间最短路径长度(或称距离)的平均值
从一个节点 s i s_{i} si出发,经过与它相连的节点,逐步"走"到另一个节点 s j s_{j} sj所经过的路途,称为两点间的路径。其中最短的路径也称为两点间的距离,记作 d i s t ( i , j ) {dist}(i,j) dist(i,j)。计算平均路径长度的公式为:

dist ⁡ c = 2 N ( N + 1 ) ∑ i ⩽ N ∑ j ⩾ i dist ⁡ ( i , j ) \operatorname {dist}_{c}={\frac {2}{N(N+1)}}\sum _{{i\leqslant N}}\sum _{{j\geqslant i}}\operatorname {dist}(i,j) distc=N(N+1)2iNjidist(i,j)

注:这其中 N N N是节点数目,并定义节点到自身的最短路径长度为0

4 集聚系数(Clustering coefficient)4

在图论中,集聚系数(也称群聚系数集群系数)是用来描述一个图中的节点之间结集成团的程度的系数。具体来说,是一个点的邻接点之间相互连接的程度。例如生活社交网络中,你的朋友之间相互认识的程度。

集聚系数分为整体与局部两种:

  • 整体集聚系数可以给出一个图中整体的集聚程度的评估。整体集聚系数定义为一个图中所有闭三点组的数量与所有连通三点组(无论开还是闭)的总量之比。

    假设图中有一部分点是两两相连的,那么可以找出很多个“三角形”,其对应的三点两两相连,称为闭三点组。除此以外还有开三点组,也就是之间连有两条边的三点(缺一条边的三角形)。

  • 而局部集聚系数则可以测量图中每一个结点附近的集聚程度。对图中具体的某一个点,它的局部集聚系数 表示与它相连的点抱成团(完全子图)的程度,用以判别一个图是否是小世界网络。图中的一个节点 v i v_i vi的局部集聚系数 C ( i ) C(i) C(i)等于所有与它相连的顶点之间所连的边的数量,除以这些顶点之间可以连出的最大边数。

注:有向图和无向图计算公式也有所不同,这里省略计算公式,感兴趣的可以参考文末提供的链接地址作进一步的学习。

知道了一个图里的每一个节点的局部集聚系数后,便可以计算整个图的平均集聚系数。显然,所有顶点的局部集聚系数的算术平均数即为平均集聚系数。

注:平均集聚系数整体集聚系数都是衡量一个图在整体上的集聚程度

5 中心性(Centrality)5

在图论和网络分析中,中心性指标可以理解为图中节点的网络位置分配数量或排名。 例如识别社会网络中最有影响力的人、互联网或城市网络中的关键基础设施节点疾病的超级传播者等。

5.1 度中心性(Degree centrality)67

度中心性(Degree Centrality)是在网络分析中刻画节点中心性(Centrality)的最直接度量指标。重要的节点就是拥有许多连接的节点。例如:你的社会关系越多,你的影响力就越强。

5.2 接近中心性(Closeness centrality)

接近中心性反映的是在网络中某一节点与其他节点之间的接近程度。接近中心性是节点到其他所有可达节点的最短路径长度的和

点度中心性仅仅利用了网络的局部特征,即节点的连接数有多少,但一个人连接数多,并不代表他/她处于网络的核心位置。接近中心性和中介中心性一样,都利用了整个网络的特征,即一个节点在整个结构中所处的位置。如果节点到图中其他节点的最短距离都很小,那么它的接近中心性就很高。相比中介中心性,接近中心性更接近几何上的中心位置。

5.3 介数中心性(Betweenness centrality)

注:有些翻译的是中介中心性或中间中心性。

网络中两个非相邻成员之间的相互作用依赖于其他成员,特别是两成员之间路径上的那些成员,且他们对两个非相邻成员之间的相互作用具有控制和制约作用。

简单点说就是:如果一个成员位于其他成员的多条最短路径上,那么该成员就是核心成员,就具有较大的介数中心性。

显然,每个节点的介数中心性即为这些最短路径穿过该节点的次数

  • 无权重网络图中该最短路径是路径包含边的数量求和

  • 而在加权网络图中该最短路径则是路径包含边的权重求和

5.4 特征向量中心性(Eigenvector centrality)

一个节点的重要性既取决于其邻居节点的数量,即该节点的度,也取决于其邻居节点的重要性。特征向量中心性的基本思想是,一个节点的中心性是相邻节点中心性的函数。也就是说,与你连接的人越重要,你也就越重要。

5.5 中心性小结

我们用一句话来总结:

  1. 点度中心性:若你的社会关系(即与你相连的人)越多,则你就越重要。

  2. 介数中心性:若你处于其他成员的多条最短路径上(即通过你才能认识其他人),那么你就是核心成员,自然也就越重要。

  3. 接近中心性:若你跟所有其他成员的距离越近,则你就越重要。

  4. 特征向量中心性:若与你连接的人社会关系越多,则你就越重要。

参考资料


  1. 度 (图论) - 维基百科,自由的百科全书 (wikipedia.org) ↩︎

  2. List of measures - Brain Connectivity Toolbox (google.com) ↩︎

  3. 小世界网络 - 维基百科,自由的百科全书 (wikipedia.org) ↩︎

  4. 集聚系数 - 维基百科,自由的百科全书 (wikipedia.org) ↩︎

  5. Centrality - Wikipedia ↩︎

  6. 度中心性_百度百科 (baidu.com) ↩︎

  7. 图或网络中的中心性:点度中心性、中介中心性、接近中心性、特征向量中心性、PageRank_知行合一,止于至善-CSDN博客_特征向量中心性 ↩︎

  • 3
    点赞
  • 59
    收藏
    觉得还不错? 一键收藏
  • 5
    评论
### 回答1: 卷积神经网络(Convolutional Neural Network,CNN)是一种广泛应用于计算机视觉领域的深度学习模型。以下是一些卷积神经网络中基本的概念: 1. 卷积层(Convolutional Layer):卷积层是CNN的核心层,它通过卷积运算提取图像的特征。卷积层包括卷积核和偏置项,卷积核通过卷积运算提取图像的局部特征。 2. 池化层(Pooling Layer):池化层用于对卷积层输出的特征图进行下采样,减少参数数量,防止过拟合。 3. 全连接层(Fully Connected Layer):全连接层将卷积层和池化层输出的特征图转换成一维向量,然后通过全连接层进行分类或回归。 4. 激活函数(Activation Function):激活函数用于增加CNN的非线性特性。常用的激活函数包括ReLU、Sigmoid和Tanh等。 5. 权重和偏置项(Weights and Bias):CNN中的每个卷积核和全连接层都有自己的权重和偏置项,这些参数是通过反向传播算法进行训练得到的。 6. 卷积步长(Stride):卷积步长是卷积核在进行卷积运算时在输入特征图上移动的步长。 7. 填充(Padding):填充是在输入特征图的周围添加一些像素,用于保持输入和输出特征图的大小一致,防止信息丢失。常用的填充方式包括“Valid Padding”和“Same Padding”。 8. 卷积核数量(Filters):卷积核数量是指在特征图上进行卷积运算时使用的卷积核的数量,每个卷积核提取一种特征。 在卷积神经网络中,这些基本概念相互配合,构成了一个复杂的深度学习模型,用于解决计算机视觉领域的分类、检测、分割等问题。 ### 回答2: 卷积神经网络(Convolutional Neural Network,简称CNN)是一种深度学习模型,常用于图像识别和计算机视觉任务。在理解CNN的基本概念前,我们需要了解以下几个关键概念: 1. 卷积层(Convolutional Layer):卷积层是CNN的核心组成部分,通过应用一系列滤波器(卷积核)对输入数据进行卷积操作,以提取输入数据的特征。每个滤波器实际上是一个小型的矩阵,通过在输入数据上进行平移运算,将每个局部区域与滤波器进行逐元素相乘,再将结果求和得到输出特征图。 2. 池化层(Pooling Layer):池化层通常用于下采样操作,以减少特征图的维度,并保留最重要的特征。常见的池化方式是最大池化(Max Pooling),即在特定的窗口中选取最大值作为池化结果。 3. 激活函数(Activation Function):激活函数非线性地引入非线性特征,以提高CNN的表达能力。常见的激活函数有ReLU(修正线性单元)、Sigmoid和Tanh等。 4. 卷积核(Kernel):卷积核是CNN中的重要参数,由多个权重构成。不同的卷积核可以提取不同的特征,通过改变卷积核的大小和数量,可以改变CNN提取的特征。 5. 步幅(Stride):步幅定义了卷积核在输入数据上的移动距离。较大的步幅可以减少输出特征图的尺寸,但可能会丢失一些信息。 6. 填充(Padding):填充是在输入数据周围添加额外像素,以控制输出特征图的尺寸。常用的填充方式有“Valid”(无填充)和“Same”(保持输入输出尺寸相同)。 通过以上基本概念,卷积神经网络能够有效地提取图像特征,并通过全连接层将这些特征映射到不同类别的分类结果。CNN已广泛应用于图像分类、目标检测、人脸识别等领域,取得了很多令人瞩目的成果。 ### 回答3: 卷积神经网络(Convolutional Neural Network,CNN)是一种用于处理具有格状结构的数据的人工神经网络。以下是一些卷积神经网络中常见的基本概念: 1. 卷积层:卷积层是CNN的核心组成部分,通过对输入数据进行卷积操作来提取特征。卷积操作是通过将一个滤波器(也称为卷积核)与输入数据进行逐元素相乘,再求和的方式实现的。 2. 滤波器(卷积核):滤波器是卷积层中的参数,用于检测图像中的特定特征,如边缘、纹理等。滤波器的大小和形状可以根据需求来设计。 3. 激活函数:激活函数在卷积神经网络中用于引入非线性变换,增加网络的表达能力。常见的激活函数有ReLU、Sigmoid和TanH等,它们通过将输入映射到某个特定范围内的数值来实现非线性变换。 4. 池化层:池化层用于减小特征图的空间尺寸,同时保留主要的特征信息。常用的池化方式有最大池化和平均池化,它们分别选取池化窗口内的最大值或平均值作为输出。 5. 全连接层:全连接层是卷积神经网络中的最后一层,它将前面的卷积和池化层的输出连接在一起,并应用于分类或回归问题。全连接层中的每个神经元都与上一层的所有神经元相连。 6. 批归一化层:批归一化层用于加速模型的训练速度和稳定性,通过对每个批次的数据进行标准化来规范化网络的输入。它可以使数据在训练过程中的分布更稳定,加快训练速度并提高模型的泛化能力。 7. 损失函数:损失函数用于衡量模型输出与真实值之间的差异程度,是卷积神经网络中的优化目标。常见的损失函数有均方差损失和交叉熵损失等,用于回归和分类问题。 卷积神经网络是目前在图像识别、目标检测等任务中取得显著结果的一种深度学习模型,上述概念是理解和应用CNN的基础

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值