机器学习算法梳理(四):随机森林

随机森林是一种集成学习方法,通过构建多个决策树并结合它们的预测结果来提高分类或回归的准确性。本文介绍了随机森林的基本概念,包括个体学习器、Boosting与Bagging的区别,以及随机森林的优缺点和在sklearn中的参数调优。随机森林通过随机特征选择和子样本采样减少过拟合,提供强大的泛化能力,适用于大数据集和高维特征空间。
摘要由CSDN通过智能技术生成

一、集成学习

使用一些(不同的)方法改变原始训练样本的分布,从而构建多个不同的分类器,并将这些分类器线性组合得到一个更强大的分类器,来做最后的决策。也就是常说的“三个臭皮匠顶个诸葛亮”的想法。

二、个体学习器

个体学习器:个体学习器是传统机器学习或者神经网络训练学习的学习器,按照个体的性质将集成学习分成同质与异质集成。

  • 同质集成:个体学习器均为同一类个体学习器,比如均为决策树或者均为神经网络;
  • 异质集成:个体学习器为不同类型个体学习器,比如决策树与神经网络一起构成新的学习器;

三、Boosting&Bagging

Boosting

Boosting是一族可将弱学习器提升为强学习器的算法。先从初始训练集训练出一个基学习器,再根据基学习器的表现对训练样本分布进行调整,使得先前基学习器做错的训练样本后续得到更多关注。常用的算法是AdaBoost和GradientBoosting。
关于Boosting的两个核心问题:
A)在每一轮如何改变训练数据的权值或概率分布?
通过提高那些在前一轮被弱分类器分错样例的权值,减小前一轮分对样例的权值,来使得分类器对误分的数据有较好的效果。
B)通过什么方式来组合弱分类器?
通过加法模型将弱分类器进行线性组合,比如AdaBoost通过加权多数表决的方式,即增大错误率小的分类器的权值,同时减小错误率较大的分类器的权值。而提升树通过拟合残差的方式逐步减小残差,将每一步生成的模型叠加得到最终模型。

Bagging

Bagging (bootstrap aggregating)

Bagging即套袋法,其算法过程如下:

  1. 从原始样本集中抽取训练集。每轮从原始样本集中使用Bootstraping的方法抽取n个训练样本(在训练集中,有些样本可能被多次抽取到,而有些样本可能一次都没有被抽中)。共进行k轮抽取,得到k个训练集。(k个训练集之间是相互独立的)
  2. 每次使用一个训练集得到一个模型,k个训练集共得到k个模型。(注:这里并没有具体的分类算法或回归方法,我们可以根据具体问题采用不同的分类或回归方法,如决策树、感知器等)
  3. 对分类问题:将上步得到的k个模型采用投票的方式得到分类结果;对回归问题,计算上述模型的均值作为最后的结果。(所有模型的重要性相同)

Bagging方法完全基于bootstrapping思想,即把训练集看做全体数据的子集,训练集对全体数据中某参数的估计等价于用训练集子采样获得的数据来估计训练集。其中,每一次迭代前,采用有放回的随机抽样来获取训练数据。这样做直接体现了bagging的一大特点:每次迭代不依赖之前建立的模型,即生成的各个弱模型之间没有关联,因此就可以彻底实现数据并行训练。这是bagging方法与上述boosting方法最大的区别。

  • Bagging和Boosting的区别:
    1)样本选择上:
    Bagging:训练集是在原始集中有放回选取的&
  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值