长短时记忆网络(LSTM)

长短时记忆网络是啥

长短时记忆网络的思路比较简单。原始RNN的隐藏层只有一个状态,即h,它对于短期的输入非常敏感。那么,假如我们再增加一个状态,即c,让它来保存长期的状态,那么问题不就解决了么?如下图所示:

新增加的状态c,称为单元状态(cell state)。我们把上图按照时间维度展开:

上图仅仅是一个示意图,我们可以看出,在t时刻,LSTM的输入有三个:当前时刻网络的输入值x_{t}、上一时刻LSTM的输出值h_{t-1}、以及上一时刻的单元状态c_{t-1};LSTM的输出有两个:当前时刻LSTM输出值h_{t}、和当前时刻的单元状态c_{t}。注意x、h、c都是向量

LSTM的关键,就是怎样控制长期状态c。在这里,LSTM的思路是使用三个控制开关。第一个开关,负责控制继续保存长期状态c;第二个开关,负责控制把即时状态输入到长期状态c;第三个开关,负责控制是否把长期状态c作为当前的LSTM的输出。三个开关的作用如下图所示:

长短时记忆网络的前向计算

先来看一下遗忘门:

上式中,W_{f}是遗忘门的权重矩阵,\left [ h_{t-1}, x_{t}\right ]表示把两个向量连接成一个更长的向量,b_{f}是遗忘门的偏置项,\sigma是sigmoid函数。如果输入的维度是d_{x},隐藏层的维度是d_{h},单元状态的维度是d_{c}(通常d_{c}= d_{h}),则遗忘门的权重矩阵W_{f}维度是d_{c}*\left ( d_{h} +d_{x} \right )。事实上,权重矩阵W_{f}都是两个矩阵拼接而成的:一个是W_{fh},它对应着输入项h_{t-1},其维度为d_{c} * d_{h};一个是W_{fx},它对应着输入项x_{t},其维度为d_{c} * d_{x}W_{f}可以写为:

下图显示了遗忘门的计算:

输入门:

输入门的计算:

当前输入的单元状态\tilde{c}_{t},它是根据上一次的输出和本次输入来计算的:

\tilde{c}_{t}的计算:

现在,我们计算当前时刻的单元状态c_{t}:

符号\circ表示按元素乘。下图是c_{t}的计算:

输出门:

输出门的计算:

LSTM最终的输出,是由输出门和单元状态共同确定的:

下图表示LSTM最终输出的计算:

长短时记忆网络的训练

激活函数

LSTM需要学习的参数共有8组,分别是:遗忘门的权重矩阵W_{f}和偏置项b_{f}、输入门的权重矩阵W_{i}和偏置项b_{i}、输出门的权重矩阵W_{o}和偏置项b_{o},以及计算单元状态的权重矩阵W_{c}和偏置项b_{c}。因为权重矩阵的两部分在反向传播中使用不同的公式,因此在后续的推导中,权重矩阵W_{f}W_{i}W_{o}W_{c}都将被写为分开的两个矩阵:W_{fh}W_{fx}W_{ih}W_{ix}W_{oh}W_{ox}W_{ch}W_{cx}

元素乘\circ符号运算:

\circ作用于一个向量和一个矩阵时,运算如下:

对角矩阵右乘一个矩阵:

行向量右乘一个对角矩阵:

定义t时刻的误差项\delta _{t}为:

加权输入,以及他们对应的误差项:

误差项沿时间的反向传递

沿时间反向传递误差项,就是要计算出t-1时刻的误差项\delta _{t-1}

利用式4式6以及全导公式得:

\delta _{t}^{T}\frac{\partial h_{t}}{\partial h_{t-1}}=\delta _{t}^{T}\frac{\partial h_{t}}{\partial o_{t}}\frac{\partial o_{t}}{\partial net_{o,t}}\frac{\partial net_{o,t}}{\partial h_{t-1}} + \delta _{t}^{T}\frac{\partial h_{t}}{\partial c_{t}}\frac{\partial c_{t}}{\partial f_{t}}\frac{\partial f_{t}}{\partial net_{f,t}}\frac{\partial net_{f,t}}{\partial h_{t-1}} + \delta _{t}^{T}\frac{\partial h_{t}}{\partial c_{t}}\frac{\partial c_{t}}{\partial i_{t}}\frac{\partial i_{t}}{\partial net_{i,t}}\frac{\partial net_{i,t}}{\partial h_{t-1}} + \delta _{t}^{T}\frac{\partial h_{t}}{\partial c_{t}}\frac{\partial c_{t}}{\partial \tilde{c}_{t}}\frac{\partial \tilde{c}_{t}}{\partial net_{\tilde{c},t}}\frac{\partial net_{\tilde{c},t}}{\partial h_{t-1}}

                     = \delta _{o,t}^{T}\frac{\partial net_{o,t}}{\partial h_{t-1}} + \delta _{f,t}^{T}\frac{\partial net_{f,t}}{\partial h_{t-1}} + \delta _{i,t}^{T}\frac{\partial net_{i,t}}{\partial h_{t-1}} + \delta _{\tilde{c},t}^{T}\frac{\partial net_{\tilde{c},t}}{\partial h_{t-1}}        (式7)

根据式6,我们可以求出:

 

根据式4,我们可以求出:

因为:

我们很容易得出:

将上述偏导数带入到式7,我们得到:

注意:原链接此处推导有误,应该为\delta _{t-1}^{T}

根据\delta _{o,t}\delta _{f,t}\delta _{i,t}\delta _{\tilde{c},t}的定义,可知:

式8式12就是将误差沿时间反向传播一个时刻的公式。有了它,我们可以写出将误差项向前传递到任意k时刻的公式:

\delta _{k}^{T}= \delta _{o,k+1}^{T}W_{oh} + \delta _{f,k+1}^{T}W_{fh} + \delta _{i,k+1}^{T}W_{ih} + \delta _{\tilde{c},k+1}^{T}W_{ch}  (式13)

注意:原链接此处推导有误,只能迭代计算

权重梯度的计算

t时刻的W_{oh}W_{fh}W_{ih}W_{ch}

将各个时刻的梯度加在一起,就能得到最终的梯度:

各个时刻的偏置项梯度:

下面是最终的偏置项梯度,即将各个时刻的偏置项梯度加在一起:

对于W_{fx}W_{ix}W_{ox}W_{cx}的权重梯度,只需要根据相应的误差项直接计算即可:

GRU

前面我们讲了一种普通的LSTM,事实上LSTM存在很多变体,许多论文中的LSTM都或多或少的不太一样。在众多的LSTM变体中,GRU (Gated Recurrent Unit)也许是最成功的一种。它对LSTM做了很多简化,同时却保持着和LSTM相同的效果。因此,GRU最近变得越来越流行。

GRU对LSTM做了两个大改动:

  1. 将输入门、遗忘门、输出门变为两个门:更新门(Update Gate)z_{t}和重置门(Reset Gate)r_{t}
  2. 将单元状态与输出合并为一个状态:h。

GRU的前向计算公式为:

下图是GRU的示意图:

 

 

 

 

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值