tf.reduce_mean tf.reduce_max tf.reduce_min 方法

tf.reduce_mean

reduce_mean(

    input_tensor,

   axis=None,

   keep_dims=False,

    name=None,

    reduction_indices=None )

功能

求张量的平均值

同理 reduce_max 、 reduce_min 就是主要求 张量的最大值和最小值

参数名必选类型说明
input_tensor张量输入待求平均值的张量
axisNone、0、1None:全局求平均值;0:求每一列平均值;1:求每一行平均值
keep_dimsBoolean保留原来的维度(例如不会从二维矩阵降为一维向量)
namestring运算名称
reduction_indicesNone和 axis 等价,被弃用
    
  1. import tensorflow as tf
  2. import numpy as py
  3.  
  4. a=[[1.,2.,3.],[2.,4.,6.]]
  5. x=tf.Variable(a)
  6. init_op=tf.global_variables_initializer()
  7. with tf.Session() as sess:
  8.     sess.run(init_op)
  9.     print(sess.run(tf.reduce_mean(a))) #求全局的平均值
  10.     print(sess.run(tf.reduce_mean(a,0))) # 求每一列平均值
  11.     print(sess.run(tf.reduce_mean(a,1))) # 求每一行的平均值
  12.  
  13.     print(sess.run(tf.reduce_max(a)))
  14.     print(sess.run(tf.reduce_max(a,0)))
  15.     print(sess.run(tf.reduce_max(a,1)))
  16.  
  17.     print(sess.run(tf.reduce_min(a)))
  18.     print(sess.run(tf.reduce_min(a, 0)))
  19.     print(sess.run(tf.reduce_min(a, 1)))

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值