SNR 信噪比

这篇博客介绍了在Matlab中计算信噪比(SNR)的三种方法,包括直接利用信噪比定义进行计算以及使用awgn函数验证SNR。通过示例代码展示了如何求出信号功率、噪声功率,并计算SNR,强调在音频放大器中,高信噪比是理想目标。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

信噪比计算公式:dB=10lg(s/n),信噪比又称为讯噪比,是指一个电子设备或者电子系统中信号与噪声的比例。这里面的信号指的是来自设备外部需要通过这台设备进行处理的电子信号,噪声是指经过该设备后产生的原信号中并不存在的无规则的额外信号(或信息),并且该种信号并不随原信号的变化而变化。
信噪比的计量单位是dB,其计算方法是10lg(Ps/Pn),其中Ps和Pn分别代表信号和噪声的有效功率,也可以换算成电压幅值的比率关系:20Lg(Vs/Vn),Vs和Vn分别代表信号和噪声电压的“有效值”。在音频放大器中,我们希望的是该放大器除了放大信号外,不应该添加任何其它额外的东西。因此,信噪比应该越高越好。

fs=50;                           	 		% 采样率
N=fs*60;                     			    % 采样点数(N):N = fs * t 
t = 0 : 1/fs : (N-1)/fs;     			    % 横坐标t坐标精度
X = 5*sin(2*pi*10*t);                		% 产生正弦信号
Y = awgn(X,10,'measured');                  % 加入信噪比为10db的噪声,加入前预估信号的功率(强度)
本方法通过使用awgn函数添加噪声对SNR进行验证,使用了计算信号功率来算SNR:
备注:awgn函数是Matlab里的加性高斯白噪声函数(AWGN)
1、
sigPower = sum(abs(X).^2)/length(X)         % 求出信号功率
noisePower = sum(abs(Y-X).^2)/length(Y-X)     % 求出噪声功率
SNR = 10*log10(sigPower/noisePower)           % 由信噪比定义求出信噪比,单位为db
2、
PS = sum(X.*X)/length(X);
PN = sum((Y-X).*(Y-X))/length(Y);
SNR2 = 10*log10(PS/PN)
3、
SNR3 = 10*log10(sum((X.^2))/sum(((Y-X).^2)))

3种方式结果一致:

参考资料:

信噪比计算公式-爱问教育培训 (sina.com.cn)

(1条消息) 信噪比计算方式(小问题解惑)_人间不想清醒的博客-CSDN博客_信噪比计算公式

### 计算信噪比 (SNR) 的方法 #### 方法一:基于信号功率和噪声功率的定义 信噪比可以表示为信号功率与噪声功率的比例。其通用公式如下: \[ \text{SNR} = \frac{\text{Signal Power}}{\text{Noise Power}} \] 如果采用分贝(dB)单位表达,则公式变为: \[ \text{SNR (dB)} = 10 \cdot \log_{10}\left(\frac{\text{Signal Power}}{\text{Noise Power}}\right) \quad [^1] \] 在实际应用中,对于图像数据或其他离散时间序列信号,可以用均方值代替功率计算。具体实现方式见以下 Python 示例代码: ```python import cv2 import numpy as np import math # 加载背景噪声图像和有效信号图像 background_img = cv2.imread('background.png', cv2.IMREAD_GRAYSCALE) useful_signal_img = cv2.imread('useful_signal.png', cv2.IMREAD_GRAYSCALE) # 计算背景噪声和有效信号的均值 background_mean = np.mean(background_img) useful_signal_mean = np.mean(useful_signal_img) # 计算背景噪声和有效信号的方差 background_var = np.mean((background_img - background_mean) ** 2) useful_signal_var = np.mean((useful_signal_img - useful_signal_mean) ** 2) # 使用方差作为功率替代项计算 SNR snr = 10 * math.log10(useful_signal_var / background_var) print("SNR:", snr, "dB") # 输出结果以 dB 表达 ``` --- #### 方法二:基于 ADC 转换中的量化误差 在模数转换器 (ADC) 中,信噪比可以通过位深 \( N \) 来估算。理论公式为: \[ \text{SNR (dB)} = 6.02N + 1.76 \quad [^2] \] 其中 \( N \) 是 ADC 的分辨率(以比特为单位)。此公式的推导假设量化噪声服从高斯分布,并且在整个奈奎斯特频带内均匀分布。 --- #### 方法三:医学影像领域中的 SNR 定义 在 CT 或 MRI 图像处理中,信噪比通常由感兴趣区域 (ROI) 的平均灰度值除以其标准偏差得到。具体公式为: \[ \text{SNR} = \frac{\mu}{\sigma} \] 其中 \( \mu \) 和 \( \sigma \) 分别代表 ROI 像素强度的均值和标准偏差。这种方法适用于评估特定目标区域的质量[^4]。 以下是对应的 Python 实现示例: ```python def calculate_snr(image_roi): mean_intensity = np.mean(image_roi) std_deviation = np.std(image_roi) snr = mean_intensity / std_deviation if std_deviation != 0 else float('inf') return snr # 示例调用 roi_data = cv2.imread('region_of_interest.png', cv2.IMREAD_GRAYSCALE) result_snr = calculate_snr(roi_data) print(f"Medical Image SNR: {result_snr}") ``` --- #### 数字电路设计中的注意事项 为了减少数字电路对接收端的影响,在 PCB 设计阶段需特别关注模拟地层和数字地层之间的干扰问题。若两者间的电压差异过大(>几百毫伏),则可能导致不可忽略的噪声耦合效应[^3]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

devilthelover

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值