AtCoder ABC169

可惜没打成这场,要不然应该可以AK的/kk/fad

E

有一个数列 { x i } \{x_i\} {xi},满足 l i ≤ x i ≤ r i l_i\leq x_i\leq r_i lixiri,现在对于给定的 l i , r i l_i,r_i li,ri,求这个数列的中位数可能有多少种不同的情况

这道题还是比较好想的,一个点能否成为中位数,就是他左边和右边的 x i x_i xi的数量相同

我们对于左端点和右端点进行排序,就可以找到他的范围了

注意对于奇数和偶数进行分类讨论

#include <bits/stdc++.h>
using namespace std;

# define Rep(i,a,b) for(int i=a;i<=b;i++)
# define _Rep(i,a,b) for(int i=a;i>=b;i--)
# define RepG(i,u) for(int i=head[u];~i;i=e[i].next)

typedef long long ll;

const int N=2e5+5;

template<typename T> void read(T &x){
   x=0;int f=1;
   char c=getchar();
   for(;!isdigit(c);c=getchar())if(c=='-')f=-1;
   for(;isdigit(c);c=getchar())x=(x<<1)+(x<<3)+c-'0';
    x*=f;
}

int n;
int l[N],r[N];
int p,q;

int main()
{
    read(n);
    Rep(i,1,n)read(l[i]),read(r[i]);
    sort(l+1,l+n+1);
    sort(r+1,r+n+1);
    if(n%2==0){
        p=l[n>>1]+l[(n>>1)+1],q=r[n>>1]+r[(n>>1)+1];
        printf("%d\n",q-p+1);
    }
    else{
        p=l[n+1>>1],q=r[n+1>>1];
        printf("%d\n",q-p+1);
    }
    return 0;
}

F

现在有一个长度为 n n n的序列 { a i } \{a_i\} {ai}
设全集 U = { 1 , 2 , 3 , ⋯   , n } U=\{1,2,3,\cdots ,n\} U={1,2,3,,n} T T T U U U的一个非空子集,现在定义 f ( T ) f(T) f(T)表示不同的 T T T的非空子集 P P P的个数,是的 ∑ a P i = S \sum a_{P_i}=S aPi=S
现在对于每一个 T T T,求 ∑ f ( T ) \sum f(T) f(T)

n , S , a i ≤ 3000 n,S,a_i\leq 3000 n,S,ai3000

首先考虑如果 T = U T=U T=U的时候怎么求

非常的简单,就是一个非常朴素的背包
我们用 f [ i ] [ j ] f[i][j] f[i][j]表示前 i i i个数,和为 j j j的方案数,那么有 f [ i ] [ j ] = f [ i − 1 ] [ j ] + f [ i − 1 ] [ j − x [ i ] ] f[i][j]=f[i-1][j]+f[i-1][j-x[i]] f[i][j]=f[i1][j]+f[i1][jx[i]]

显然我们需要更改一下状态: f [ i ] [ j ] f[i][j] f[i][j]表示由前 i i i个数组成的所有集合中,选出和为 j j j的方案数总和
那么怎么求出每一个集合的方法呢?
我们把最开始的转移看成两部分

  • f [ i − 1 ] [ j ] f[i-1][j] f[i1][j]转移过来,此时我们求和时不选 x i x_i xi,那么也就是说,不管我们的集合里面选不选 i i i,这个方案一直都在,所以这时候的转移量应该是 f [ i − 1 ] [ j ] × 2 f[i-1][j]\times 2 f[i1][j]×2
  • f [ i − 1 ] [ j − x [ i ] ] f[i-1][j-x[i]] f[i1][jx[i]],这个时候我们必须选择 x i x_i xi,所以他应该算到答案的集合里面必须有 i i i,所以方案数不变

那么我们的转移就变成了 f [ i ] [ j ] = f [ i − 1 ] [ j ] × 2 + f [ i − 1 ] [ j − x [ i ] ] f[i][j]=f[i-1][j]\times2+f[i-1][j-x[i]] f[i][j]=f[i1][j]×2+f[i1][jx[i]]

初值 f [ 0 ] [ 0 ] = 1 f[0][0]=1 f[0][0]=1

答案 f [ n ] [ S ] f[n][S] f[n][S]

然后就轻松通过了qwq

#include <bits/stdc++.h>
using namespace std;

# define Rep(i,a,b) for(int i=a;i<=b;i++)
# define _Rep(i,a,b) for(int i=a;i>=b;i--)
# define RepG(i,u) for(int i=head[u];~i;i=e[i].next)

typedef long long ll;

const int N=3005;
const int mod=998244353;

template<typename T> void read(T &x){
   x=0;int f=1;
   char c=getchar();
   for(;!isdigit(c);c=getchar())if(c=='-')f=-1;
   for(;isdigit(c);c=getchar())x=(x<<1)+(x<<3)+c-'0';
    x*=f;
}

int n,m;
int a[N];
int f[N][N];
int mi[N];

int main()
{
    read(n),read(m);
    Rep(i,1,n)read(a[i]);
    f[0][0]=1;
    Rep(i,1,n){
        Rep(j,0,m){
            f[i][j]=f[i-1][j]*2%mod;
            if(j>=a[i])f[i][j]+=f[i-1][j-a[i]],f[i][j]%=mod;
        }
    }
    printf("%d\n",f[n][m]);
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值