人脸光照调整一直是人脸识别问题中的难点,作者就不同处理方法,并结合其在实际应用中的表现,在此分章节谈一些个人看法,有不当之处,还望各园友指正。
光照调整主要分在频率域和空间域的处理,频率域中有DCT变换、小波变换等。而在空间域有直方图均衡化、Gamma校正等。作者在此只介绍一些主流并有较广适应范围的方法。首先,我们来谈谈DCT变换吧:
DCT(离散余弦变换)对高相关性的数据(信号),具有非常好的能量聚焦性,经过变换,信号能量的绝大部分被集中到变换域的少数系数上。因此,对于受光照影响的图像,我们只需要修改很少的频域系数,就可以对图像的光照做出较好调整,避免了需要调节多个参数以适合不同图像的问题,操作简便易行。
1. 一维DCT变换的实现步骤:
1) 计算DCT变换的点数,并对时域空间进行延拓;
2) 调用一维傅里叶变换;
3) 调整系数并存储;
2. 二维DCT变换的实现步骤:
1) 计算进行二维图像DCT变换的高度和宽度,如果不是2的整数次幂则要进行调整,并计算在水平和垂直方向上变换时迭代的次数;
2) 用一