基于机器学习的健身房会员健康风险分类及预测分析

1.项目背景

随着健康意识的提升和健身文化的普及,人们对科学健身和个性化训练的需求日益增长,健身房会员的锻炼模式和健康管理需求呈现出新的特点,本项目使用基于真实健身模式生成的973位会员数据进行深入分析,探索不同会员群体的训练特征和健康风险,了解影响会员训练效果的关键因素,这不仅有助于理解会员的锻炼习惯,还可以为健身房优化服务体系、制定更科学的训练计划提供数据支持,同时,通过建立健康风险预测模型,可以更好地识别潜在的健康隐患,为提供安全、高效的个性化训练指导奠定基础。

2.数据说明

字段 说明
Index 每条记录的唯一标识号
Age 会员年龄
Gender 会员性别(男性或女性)
Weight (kg) 会员体重(单位:公斤)
Height (m) 会员身高(单位:米)
Max_BPM 运动时最大心率
Avg_BPM 运动时平均心率
Resting_BPM 静息心率
Session_Duration (hours) 每次锻炼持续时间(单位:小时)
Calories_Burned 每次锻炼消耗的卡路里
Workout_Type 锻炼类型(包括:瑜伽、HIIT、有氧、力量训练)
Fat_Percentage 体脂率(百分比)
Water_Intake (liters) 饮水量(单位:升)
Workout_Frequency (days/week) 每周锻炼频率(单位:天/周)
Experience_Level 训练经验水平(1 至 3级)
BMI 身体质量指数

3.Python库导入及数据读取

import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_score
from scipy.stats import spearmanr,f_oneway
from imblearn.over_sampling import RandomOverSampler
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import classification_report,mean_squared_error, r2_score,mean_absolute_error
data = pd.read_csv("/home/mw/input/11011446/gym_members_data.csv")

4.数据预览

查看重复值:0

数据不存在缺失值、重复值,虽然体重、BMI、卡路里消耗存在少量异常值,但是也是符合一些大体重、运动时间较长的用户,故不处理这些值。

5.用户画像分析

  • 基础人口统计特征:

      <
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值