GPT-4-Turbo的128K长度上下文性能如何?超过73K Tokens的数据支持依然不太好!

本文原文来自DataLearnerAI官方网站:GPT-4-Turbo的128K长度上下文性能如何?超过73K Tokens的数据支持依然不太好! | 数据学习者官方网站(Datalearner)icon-default.png?t=N7T8https://www.datalearner.com/blog/1051699526438975

GPT-4 Turbo是OpenAI最新发布的号称性能超过当前GPT-4的模型。在新版本的ChatGPT中已经可以使用。而接口也在开放。除了速度和质量外,GPT-4 Turbo最吸引人的是支持128K超长上下文输入。但是,实际测试中GPT-4 Turbo对于超过73K tokens文档的理解能力急速下降。

使用gpt-3.5-turbo api实现上下文关联回答的功能,需要先了解一下gpt-3.5-turbo api的调用方式和参数设置。 首先,我们需要在OpenAI平台上注册一个账号,然后创建一个gpt-3.5-turbo api的应用程序,并获取API密钥。 接下来,我们可以使用Python编程语言来调用gpt-3.5-turbo api,具体步骤如下: 1. 安装OpenAI的Python SDK,可以使用以下命令进行安装: ```python pip install openai ``` 2. 导入OpenAI的Python SDK,并设置API密钥: ```python import openai openai.api_key = "YOUR_API_KEY" ``` 3. 设置gpt-3.5-turbo api的参数,包括模型ID、上下文、提示文本等: ```python model_engine = "text-davinci-002" # 模型ID context = "I am a student." # 上下文 prompt = "What do you think about the student?" # 提示文本 ``` 4. 调用gpt-3.5-turbo api,获取回答结果: ```python response = openai.Completion.create( engine=model_engine, prompt=prompt, max_tokens=100, n=1, stop=None, temperature=0.5, context=context ) answer = response.choices[0].text.strip() ``` 在上面的代码中,我们使用了OpenAI的Python SDK提供的Completion.create()方法来调用gpt-3.5-turbo api,其中max_tokens参数表示生成的文本长度,n参数表示生成的文本数量,stop参数表示停止字符,temperature参数表示温度值,context参数表示上下文。 最后,我们可以将回答结果输出到屏幕上或者保存到本地文件中: ```python print(answer) ``` 以上就是使用gpt-3.5-turbo api实现上下文关联回答的简单步骤,需要注意的是,对于不同的应用场景,可能需要调整不同的参数来达到更好的效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值