大模型开发
文章平均质量分 94
2023 年是 AI 爆发的⼀年,各种 AI 技术和产品如井喷⼀样爆发,尤其是以ChatGPT 为代表的⼤语⾔模型。我在今年完整地经历了:惊讶于 AI 的强⼤,焦虑被 AI 或者善⽤ AI 的⼈替代,学习 AI ,使⽤ AI ,成为善⽤ AI 的⼈。
三月七꧁ ꧂
尚未佩妥剑,转眼便江湖。愿历尽千帆,归来仍少年! 跨考计算机上岸,下一站:月薪3W!
展开
-
大模型术语表
受人脑结构启发的计算模型,用于处复杂的机器学习任务:它由相互连的神经元层组成,通过加权连来转换输入据:一些类型的人工神经网络(如循环神经网络)可用于处理具有记忆元素的顺序数据,而其他类型的人工神经网络(如基于Transformer架构的模型)则使用注意力机制来衡量不同输入的重要性。一般而言,模型的参数越多,它的学习能力和处理复杂数据的能力就越强。OpenAI开发的一项功能,它允许开发人员在调用GPT模型的API时,描述函数并让模型智能地输出一个包含调用这些函数所需参数的JSON对象。原创 2024-08-02 11:08:35 · 170 阅读 · 0 评论 -
使用GPT-4插件增强LLM的功能
在开发插件前,你必须创建一个API并将其与两个描述性文件关联起来,一个插件清单和一个OpenAPI规范。当你开始与GPT-4进行交互OpenAI会向GPT-4发送一条隐藏消息,以检查你的插件是否己安装。这条消息会介绍你的插件,包括其描述信息、端点和示例,这样一来,模型就成了智能的API调用者。当用户询问关于插件的问题时,模型可以调用你的插件API。是否调用插件是基于OpenAPI规范和关于应该使用API的情况的自然语言描述所做出的决策。原创 2024-08-02 10:47:20 · 463 阅读 · 0 评论 -
使用LangChain框架增强LLM的功能
LangChain框架和GPT-4的插件。我们将研究 LangChain框架如何实现与不同语言模型的交互,以及插件在扩展GPT-4功能方面的重要性。这些高阶知识对于开发复杂、尖端的LLM驱动型应用程序至关重要。 Langchain是专用于开发LLM驱动型应用程序的框架。你会发现,集成Langchain的代码前面文章提供的示例代码更优雅。该框架还提供了许多额外的功能。使用 pip install langchain 可以快速、简便地安装LangChain。LangChain仍处于beta版本0.原创 2024-07-26 15:21:14 · 203 阅读 · 0 评论 -
微调的应用
针对收益报告、财务报表和分析师报告等财务文档,经过微调的LLM可以生成简明、准确的摘要。在与财务记录明确相关的数据集上微调后,LLM可以更准确地理解财务文档的术语和上下文。比如,模型可以将央行关于上调利率的详细报告压缩成简洁而富有信息的摘要。要调整现有模型以获得更好的财务文档摘要,你需要拥有大量样本摘要。这样一来,你便可以给模型提供一个包含财务文档及其理想摘要的JSONL文件,举例如下。原创 2024-07-25 20:36:45 · 412 阅读 · 0 评论 -
GPT-4和ChatGPT的高级技巧---微调
微调除了文中提到的确保模型生成内容更符合目标领域的特定语言模式、词汇和语气,还有一个优势:你可以通过微调缩短每一次提示中重复的指令或提示词以节省成本或降低延迟,模型会记住通过微调获得的内置指令。开发人员可以为应用程序选择最合适的模型:较小的模型(ada和babbage)可能在简单任务或资源有限的应用程序中更快且更具成本效益,较大的模型 curie 和davinci)则提供了更强的语言处理和生成能力,从而适用于需要更高准确性的复杂任务。需要强调的是,微调后的模型是新模型它位于OpenAl的服务器上。原创 2024-07-15 20:06:33 · 601 阅读 · 0 评论 -
GPT-4和ChatGPT的高级技巧---提示工程
在深入研究提示工程之前,让我们简要回顾聊天模型的chat_completion 函数,因为本节将经常用到它。为了使代码更加紧凑,我们将该函数定义如下: 该函数接收提示词并在终端中显示补全结果。model和temperature是两个可选特征,分别被默认设置为gpt-4和0。为了说明提示工程的原理,我们将再次使用示例文本“As Descartes said,I think therefore”(正如笛卡儿所说,我思故)。如果将此文本输入GPT-4 那么模型自然会通过迭代式地添加最可能出现的标原创 2024-07-15 19:38:58 · 287 阅读 · 0 评论 -
使用GPT-4和ChatGPT构建应用项目
LLM已被证明在总结文本方面表现出色。在大多数情况下,LLM能够提取文本的核心思想并重新表达,使生成的摘要流畅且清晰。文本摘要在许多情况下很有用,举例如下。媒体监测:快速了解重要信息,避免信息过载。趋势观察:生成技术新闻的摘要或对学术论文进行分组并生成有用的摘要。客户支持:生成文档概述,避免客户被大量的信息所淹没。电子邮件浏览:突出显示最重要的信息,并防止电子邮件过载。在本项目中,我们将为YouTube视频生成摘要。你可能会感到惊讶:如何将视频提供给GPT-4或ChatGPT呢?原创 2024-07-11 11:09:57 · 2071 阅读 · 1 评论 -
使用 GPT-4 和 ChatGPT 构建应用程序
要开发基于LLM的应用程序,核心是将LLM与OpenAI API集成。这需要开发人员仔细管理API密钥,考虑数据安全和数据隐私,并降低集成LLM的服务受特定攻击的风险。你必须拥有一个API密钥才能使用OpenAl服务。由于如何管理API密钥将影响应用程序设计,因此这是一个需要从一开始就关注的话题。本文将展示如何管理用于LLM驱动型应用程序开发的API密钥。我们无法详细介绍每一种API密钥管理方案,因为它们与应用程序的类型密切相关:它是一个独立的解决方案吗?是Chrome插件还是Web服务器?原创 2024-07-11 09:43:20 · 808 阅读 · 0 评论 -
其他OpenAI API和功能
有两个内容审核模型可供选择,默认模型是text-moderation-latest,它会随时间自动更新,以确保你始终使用最准确的模型。尽管“猫在房子周围追着老鼠跑“和“在房子周围,老鼠被猫追着跑“具有不同的语法结构,但它们的大体意思相同,因此具有相似的嵌入表示。而句子“航天员在轨修理了宇宙飞船与前面的句子(关于猫和老鼠的句子)无关,并且讨论了完全不同的主题(航天员和宇宙飞船),因此它的嵌入表示明显不同。请注意,为清晰起见,本例将嵌入显示为具有两个维度,但实际上,嵌入通常具有更高的维度,比如512维。原创 2024-07-01 10:18:35 · 365 阅读 · 0 评论 -
openai的其他文本补全模型
由于gpt-3.5-turbo模 型也可用于单轮文本补全任务,并且对于这类任务,两个模型的准确性相当,因此我们建议使用gpt-3.5-turbo模型(除非你需要插入、后缀等特殊功能,或者在特定的任务上text-davinci-003模型的性能更佳)。尽管无论是在价格方面还是在性能方面,GPT-3.5 Turbo 模型通常都是最佳选择,但是不妨了解如何使用文本补全模型,特别是在微调等用例中,GPT-3文本补全模型是唯一的选择。然而,在复杂的推理场景中,gpt-4模型远优于任何先前的模型。原创 2024-07-01 10:03:47 · 345 阅读 · 0 评论 -
深入了解 GPT-4 和 ChatGPT 的 API---使用 OpenAI Python 库
在前面的例子中,我们使用了最少数量的参数,即用于预测的 LLM 和输入消息。在 OpenAI API 调用结果需要由代码的其余部分处理时,这个功能特别有用:你可以使用函数定义将自然语言转换为 API 调用或数据库查询,从文本中提取结构化数据,并通过调用外部工具来创建聊天机器人,而无须创建复杂的提示词以确保模型以特定的格式回答可以由代码解析的问题。如果将参数 n 设置为大于 1,那么你会发现 prompt_tokens 的值不会改变,但 completion_tokens 的值将大致变为原来的 n 倍。原创 2024-06-26 15:48:17 · 1385 阅读 · 0 评论 -
深入了解 GPT-4 和 ChatGPT 的 API---OpenAI Playground
掌握GPT-4 和 ChatGPT 的 API 的使用方法,以便有效地将它们集成到 Python 应用程序中。首先,需要了解 OpenAI Playground。这将使你在编写代码之前更好地了解模型。接着,需要学习 OpenAI Python 库。这部分内容包括登录信息和⼀个简单的 Hello World 示例。然后,需要学习创建和发送 API 请求的过程,并了解如何处理 API 响应。这将确保你知道如何解释这些 API 返回的数据。最后,还会介绍诸如安全最佳实践和成本管理等考虑因素。随着学习的深入原创 2024-06-24 21:05:59 · 1788 阅读 · 0 评论 -
使用插件和微调优化 GPT 模型
自 2012 年起,Be My Eyes 已通过技术为数百万视障人士,提供了帮助它的应用程序是志愿者与需要帮助的视障人士之间的纽带,使视障人士在日常生活中得到帮助,比如识别产品或在机场导航。只需在应用程序中点击⼀次,需要帮助的视障人士即可联系到⼀位志愿者,后者通过视频和⻨克风提供帮助。GPT-4 的多模态能力使得它能够处理文本和图像。Be My Eyes 开始基于 GPT-4 开发新的虚拟志愿者。这个虚拟志愿者旨在达到与⼈类志愿者相当的理解水平和帮助能力。Be My Eyes 的首席执行官 Mich原创 2024-06-24 19:45:31 · 984 阅读 · 0 评论 -
GPT 模型简史:从 GPT-1 到 GPT-4
2018 年年中,就在 Transformer 架构诞生⼀年后,OpenAI 发表了⼀篇题为“Improving Language Understanding by Generative Pre-Training”的论文,作者是 Alec Radford 等⼈。这篇论文介绍了 GPT,也被称为 GPT-1。在 GPT-1 出现之前,构建高性能 NLP 神经网络的常用方法是利用监督学习。这种学习技术使用大量的手动标记数据。以情感分析任务为例,目标是对给定的文本进行分类,判断其情感是积极的还是消极的。原创 2024-06-21 19:59:38 · 1983 阅读 · 1 评论 -
初识 GPT-4 和 ChatGPT
作为 LLM,GPT-4 和 ChatGPT 是 NLP 领域中最新的模型类型,NLP 是机器学习和⼈⼯智能的⼀个子领域。在深⼊研究 GPT-4 和 ChatGPT 之前,有必要了解 NLP 及其相关领域。AI 有不同的定义,但其中⼀个定义或多或少已成为共识,即 AI 是⼀类计算机系统,它能够执行通常需要⼈类智能才能完成的任务。根据这个定义,许多算法可以被归为 AI 算法,比如导航应用程序所用的交通预测算法或策略类视频游戏所用的基于规则的系统。从表面上看,在这些示例中,计算机似乎需要智能才能完成相关任务。原创 2024-06-21 17:29:22 · 2003 阅读 · 1 评论