VVC中图块划分结果在图像上显示(中间有一段没写完)

本文档详细介绍了如何在VVC(Versatile Video Coding)编码器中实现CU(Coding Unit)的划分结果显示,以及通过不同颜色标识不同类型的CU。主要步骤包括在编码结构和编码单元类中添加变量,保存和更新CU的划分类型,在编码过程中传递和更新信息,以及在重建完成后使用特定颜色标记CU的边界。通过这种方法,可以在重建图像中清晰地看到CU的划分结构。
摘要由CSDN通过智能技术生成

参考

改进《VVC/VTM中CU的划分结果打印》_pengyouyou的博客-CSDN博客

VVC学习之二:VTM中CU划分结构QTMTT(3):打印QTMTT最终划分_Aidoneus_y的博客-CSDN博客

VTM14

思路: 如果只是想看图像划分结果,不在乎之后的解码时的影响。即可在重建值中将各个不同划分类型的CU染色

记录下CU的划分类型,最后根据划分类型显示

在划分开始的时候(递归开始),划分出子节点,此时将划分类型保存到CS之中;然后由CS告知其中的每个CU;最后,每个CU被编码后,将CU的划分信息回传给父节点(递归结束)。

步骤:

 1.先在codingStructure和codingUnit这两个类中分别创建两个变量

cs中为:

uint8_t partype;//增加划分模式管理

partype表示当前CS正在测试的划分模式

cu中为:

uint8_t finaltype; //增加划分模式信息

finaltype表示当前CS的CU比较后最终采用的划分模式

2.在xCheckModeSplit()函数的do while结构里,创建完tempSubCS和bestSubCS的语句下面,添加

 tempSubCS->partype=encTestMode.type; //保存当前subCu划分

 bestSubCS->partype = encTestMode.type;

因为从xcompressCu()函数传输参数到xCheckModeSplit(),有一个变量叫currTestMode,是encTestMode类实例化的一个对象,由m_modeCtrl->currTestMode()赋值,值为当前块所测试的模式。而encTestMode类有type,opts,maxCostAllowed,qp这几个变量。所以这里保存的是当前即将测试的CU的父CU的划分模式(也可以理解为当前CU的被划分模式)

3.在initSubStructure()函数中调用的addCU()函数里添加

cu->finaltype = partype;//cu存入cs采用的划分类型

initSubStructure()函数在xcompressCu()函数和xCheckModeSplit()函数中都默认isTuEnc为false,所以不会运行 addCU()函数,只有在estIntraPredLumaQT()中,默认isTuEnc为true(这里之后写了预测代码分析后再补上

参照底下我的博客,addCU()函数目的是初始化 pcu的一些数据,然后据此推测出缩放后的CU,父CU的size,和idxptr,将这些数据存入AreaBuf。这里也将当前CS的partype存入了当前cu中.

 这里是128X128的CTU四叉树的第一个64X64在XcompressCu()中预测模式测试完后继续循环,在进入xCheckModeSplit()函数前,Cu中已经有了finaltype,值为7,代表QT

initSubStructure()和addCU()函数(addCU还没写)_青椒鸡汤的博客-CSDN博客

xCheckModeSplit()中的useSubStructure()函数,releaseIntermediateData()函数解析,add()函数解析(getBuf()函数没看)_青椒鸡汤的博客-CSDN博客

4.在useSubStructure()函数中添加 :

cu.finaltype = pcu->finaltype;

解析:useSubStructure()这一段将当前子CU的信息赋给了subRecoBuf,然后再将将前面PelUnitBuf的subRecoBuf的信息存进picture所调用的PelUnitBuf

 UnitArea clippedArea = clipArea( subArea, *picture );

  setDecomp( clippedArea );

  CPelUnitBuf subPredBuf = cpyPred ? subStruct.getPredBuf( clippedArea ) : CPelUnitBuf();
  CPelUnitBuf subResiBuf = cpyResi ? subStruct.getResiBuf( clippedArea ) : CPelUnitBuf();
  CPelUnitBuf subRecoBuf = cpyReco ? subStruct.getRecoBuf( clippedArea ) : CPelUnitBuf();

  if( parent )
  {
    // copy data to picture
    if (cpyPred)
    {
      getPredBuf(clippedArea).copyFrom(subPredBuf);
    }
    if (cpyResi)
    {
      getResiBuf(clippedArea).copyFrom(subResiBuf);
    }
    if (cpyReco)
    {
      getRecoBuf(clippedArea).copyFrom(subRecoBuf);
    }
    if (cpyOrgResi)
    {
      getOrgResiBuf(clippedArea).copyFrom(subStruct.getOrgResiBuf(clippedArea));
    }
  }

  if (cpyPred)
  {
    picture->getPredBuf(clippedArea).copyFrom(subPredBuf);
  }
  if (cpyResi)
  {
    picture->getResiBuf(clippedArea).copyFrom(subResiBuf);
  }
  if (cpyReco)
  {
    picture->getRecoBuf(clippedArea).copyFrom(subRecoBuf);
  }

 将当前CU中的子CU里的finaltype信息更新

// copy the CUs over
  if( subStruct.m_isTuEnc )
  {
    // don't copy if the substruct was created for encoding of the TUs
  }
  else
  {
    for( const auto &pcu : subStruct.cus )
    {
      // add an analogue CU into own CU store
      const UnitArea &cuPatch = *pcu;//当前子CU area
      CodingUnit &cu = addCU( cuPatch, pcu->chType );//在CUs中新建一个CU,新建一层(size),并写入父CU的一些基本信息

      // copy the CU info from subPatch
      cu = *pcu;//将新size的信息更新为子CU的
      cu.finaltype = pcu->finaltype;//cu是this指针(父cs),将cu中的finaltype更新为子CU的
    }
  }

 subStruct.cus一共有五层,都是已划分好CU的信息,加起来就是当前32X32的块

 pcu代表已划分的子CU,存有子CU的一切信息。addCU()函数根据当前CU的位置信息和亮色度信息,新建一层CU(size+1),然后将父CU的信息复制到这个新CU里(将父CU的finaltype值给了这个新的CU。比如现在的32X32块,所属划分模式就是7,因为是64X64四叉树划分形成的。这里这个新CU的finaltype也变成了7)

接下来的

 cu = *pcu;

将这个新CU层的信息用子CU(即当前pcu)的信息所覆盖。但这里没有把当前子CU的finaltype覆盖,所以还要加一句

 cu.finaltype = pcu->finaltype;

Pcu中的 finaltype写到了父CU中(finaltype从7变成了{x = 0, y = 16, width = 32, height = 16}这个子CU的finaltype值 8)

 等于当前父CU(32X32)中的每一个划分好的子CU的信息都写入了subStruct.cus中,并存了下来。之后可以随时调用

 5.compressGOP中重建完成(pcPic->reconstructed = true;)之后,添加:

#if SPLIT_SHOW
    PelUnitBuf recpic = pcPic->getRecoBuf();//重建结束后得到重建缓存
    AreaBuf<Pel>& recYpoint = recpic.Y();//得到Y分量
    AreaBuf<Pel>& recCbpoint = recpic.Cb();//得到Cb
    AreaBuf<Pel>& recCrpoint = recpic.Cr();//得到Cr
    uint64_t culength = pcPic->cs->cus.size();//总的cu数量
    for (uint64_t n = 0; n<culength; n++) {
      CodingUnit* finalCU = pcPic->cs->cus.at(n);//得到每一个CU
      Area curArea(finalCU->lumaPos(), finalCU->lumaSize());//CU大小和位置
      if (finalCU->chType == CHANNEL_TYPE_LUMA) {//cu是否亮度cu
        splitshow(recYpoint, recCbpoint, recCrpoint, curArea, finalCU->finaltype);
      }      
    }
#endif // SPLIT_SHOW

添加:这里面的 Area curArea(finalCU->lumaPos(), finalCU->lumaSize());//CU大小和位置

用的是结构体area中的这个结构,之后写代码时可参考 

 

得到重建缓存,存在PelUnitBuf实例化的对象里

 读取cus中的cu数量(这里有4700个)

#if SPLIT_SHOW
void splitshow(AreaBuf<Pel>& recYpoint, AreaBuf<Pel>& recCbpoint, AreaBuf<Pel>& recCrpoint, Area curArea,int type) {
  int x = curArea.x ;//偏置1个像素
  int y = curArea.y ;//
  int h = curArea.height;//
  int w = curArea.width;//
  int16_t Y_value=0,Cb_value=0,Cr_value=0;//
  switch (type) {
  case 10:Y_value = 327; Cb_value = 361; Cr_value = 960; break;//红色
  case 8:Y_value = 640; Cb_value = 215; Cr_value = 136; break;//绿色
  case 7:Y_value=164; Cb_value = 960; Cr_value = 440; break;//蓝色
  case 11:Y_value=426; Cb_value = 810; Cr_value = 888; break;//紫色
  case 9:Y_value = 901; Cb_value = 64; Cr_value = 584; break;//黄色
  case 12:Y_value = 739; Cb_value = 663; Cr_value = 64; break;//青色
  case 13:Y_value = 192; Cb_value = 656; Cr_value = 607; break;//靛青
  default:break;
  }
  //y,cb,cr纯红(327,361,960)纯绿(640,215,136)纯蓝(164,960,440)
  //淡紫色(426,810,888)黄色(901,64,584)青色(739,663,64)
  //靛青(192,656,607)
  for (int j = 0; j < h; j++) {
    //left
    //recYpoint.at(x, y + j) = Y_value; ///左边1
    //recYpoint.at(x + 1, y + j) = Y_value;//左边2
   // recCbpoint.at(x / 2, (y + j) / 2) = Cb_value; //cb分量
    //recCrpoint.at(x / 2, (y + j) / 2) = Cr_value;//cr分量
    //right
    recYpoint.at(x+w-2, y + j) = Y_value; ///1
    recYpoint.at(x+w-1, y + j) = Y_value;//2
    recCbpoint.at((x+w-2) / 2, (y + j) / 2) = Cb_value; //cb分量
    recCrpoint.at((x+w-2) / 2, (y + j) / 2) = Cr_value;//cr分量
  }
  for (int i = 0; i < w; i++) {
    //top
    //recYpoint.at(x + i, y) = Y_value; //上1
    //recYpoint.at(x + i, y + 1) = Y_value;//上2
    //recCbpoint.at((x + i) / 2, y / 2) = Cb_value; //cb分量
    //recCrpoint.at((x + i) / 2, y / 2) = Cr_value;//cr分量
    //down
    recYpoint.at(x + i, y+h-2) = Y_value; //1
    recYpoint.at(x + i, y+h-1) = Y_value;//2
    recCbpoint.at((x + i) / 2, (y+h-2) / 2) = Cb_value; //cb分量
    recCrpoint.at((x + i) / 2, (y+h-2) / 2) = Cr_value;//cr分量
  }
}
#endif

得到每个CU的area信息,再根据每个CU最终的finaltype类型,选择CU周围像素颜色,赋给几个分量。

at()是AreaBuf结构体自带的函数,输入的参数可定位CU中的像素。这里用for循环将CU的边界像素改颜色

最后结果

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值