python学习
文章平均质量分 61
青椒鸡汤
多走多看多学
展开
-
爬虫学习 例子
print("标题为: ",title.find("h1", attrs={"class": "f20", "style": "margin:0;用的笨办法,在得到标题和内容后,打开TXT目标文件,写入字符串,然后自己关闭。因为网页中的原始文本是在页面中间的,所以这里用lstrip()函数只去除每行文本左边的空格,strip()会去除两边,使文本都黏在一起。原创 2023-04-20 20:23:56 · 822 阅读 · 1 评论 -
Flat Lattice 代码
运行 python flat_main.py --dataset clue1.根据已有代码,添加了2.gbk问题就写encoding=‘utf-8’3.invalid argument:因为cacahe文件夹里要读取的一个文件名里有冒号,所以在flat_main.py下这里把文件命名改了,冒号全去掉4.若出现enconding type的错误,注意看自己用的什么数据集,比如clue,就改成bio。5.flat_main.py 因为默认设置就是ues bert == 1,所以这里把。原创 2023-03-13 21:54:38 · 610 阅读 · 1 评论 -
lattice,flat
lattice model(结合上面两个博客来看)与原版lstm作对比,理解网络的记忆这个概念。原创 2023-03-06 17:42:05 · 633 阅读 · 0 评论 -
AutoDL使用
环境先选miniconda ,然后自己在终端中创建环境,配置环境。配置好环境后在终端进入文件,然后python xxx.py,运行。传入文件夹选ssh方式,具体帮助文档上有。原创 2023-02-28 16:28:36 · 914 阅读 · 0 评论 -
命名实体识别代码阅读
【python】——Python中的*和**的作用和含义_Kadima°的博客-CSDN博客_python * **理解‘*‘,‘*args‘,‘**‘,‘**kwargs‘_callinglove的博客-CSDN博客#定义下游模型self.tuneing = False #fineturn预设为0self.pretrained = None #默认情况下,预训练模型不属于下游任务的一部分#下游任务if self.tuneing: #如果tuning,则认为自己的预训练模型也要训练。原创 2023-02-21 19:12:30 · 1899 阅读 · 4 评论 -
huggingface
数据集这几个博客中的行,列可根据自己的排列形式自由理解。原创 2023-02-18 16:02:55 · 1081 阅读 · 0 评论 -
python (6) 卷积神经网络实例
图像的shape计算(即其中的16*4*4),最好就是再中间用print打印出来。前向传播时随机去掉一些神经元的结果,相当于多个模型训练,接触过拟合问题。因为数据集图片的大小,形状都不一样,所以需要在数据预处理时处理好。plt.show()后暂停的处理。3.dropout解决过拟合。主要是修改了自定义模型那块。第一种读取图片的方法。原创 2022-10-26 16:28:34 · 1860 阅读 · 0 评论 -
python(5) softmax回归实例
ToTensor作用DataLoader作用乱序 shuffle将数据采样为小批次 batch_sizenum_workers 实现多图片同时读取。原创 2022-10-17 14:01:34 · 853 阅读 · 0 评论 -
python 神经网络 (3) 多层感知器实例
全部数据都参与训练可能会过拟合,所以要切分一部分数据作为验证。使用dataloeader加载模型数据,主要改的最后一段。使用dataset加载模型数据。原创 2022-10-12 13:38:34 · 957 阅读 · 0 评论 -
python (2) 逻辑回归实例
【代码】python (2) 逻辑回归实例。原创 2022-10-09 20:40:54 · 689 阅读 · 0 评论 -
python学习 2 张量
5.实例 收入数据集(可与之前那个线性回归的例子详细比较)4.张量变形与自动微分。原创 2022-09-27 16:37:47 · 1204 阅读 · 0 评论 -
python 1.pytorch模型创建 线性回归
data.Education.values.reshape(-1,1):data.Education.values是一个有30个变量的数组,这里改变其形态,转变为30个一行一列维度为1的输入。左边的-1位自动计算,数组中有几个数据就多少行,右边的1直接定义了列数只为1。原创 2022-09-19 16:50:18 · 489 阅读 · 0 评论