在自然语言处理任务中,尤其是在构建提示(prompts)的时候,如何选择合适的示例是个重要的考量。特别是当您需要处理的输入可能超出上下文窗口长度时,通过调整所选示例的数量来避免超长提示显得尤为必要。本文将介绍如何使用 LengthBasedExampleSelector
来根据长度动态选择示例,以适应不同的输入大小。
技术背景介绍
在生成提示中,如何合理地选择示例既能丰富上下文又能避免超出模型的处理能力。特别在构建多轮对话或者复杂任务的提示时,选择合适数量的示例是个关键步骤。例如,长输入可能需要更少的示例来保持在允许的长度范围内,而短输入则可以包含更多的示例以增强输出的质量和一致性。
核心原理解析
LengthBasedExampleSelector
提供了一种机制:根据输入内容的长度动态地选择示例。通过设定最大长度参数,它可以确保生成的提示不会超出指定的长度。这个长度是通过自定义的文本长度计算函数来确定的。
代码实现演示
以下代码示例展示了如何使用 LengthBasedExampleSelector
进行示例选择,并构建动态提示模板:
from langchain_core.example_selectors import LengthBasedExampleSelector
from langchain_core.prompts import FewShotPromptTemplate, PromptTemplate
# 示例任务:创建反义词
examples = [
{"input": "happy", "output": "sad"},
{"input": "tall", "output": "short"},
{"input": "energetic", "output": "lethargic"},
{"input": "sunny", "output": "gloomy"},
{"input": "windy", "output": "calm"},
]
example_prompt = PromptTemplate(
input_variables=["input", "output"],
template="Input: {input}\nOutput: {output}",
)
example_selector = LengthBasedExampleSelector(
examples=examples, # 提供可选的示例
example_prompt=example_prompt, # 格式化示例的模板
max_length=25, # 最大长度限制
)
dynamic_prompt = FewShotPromptTemplate(
example_selector=example_selector,
example_prompt=example_prompt,
prefix="Give the antonym of every input",
suffix="Input: {adjective}\nOutput:",
input_variables=["adjective"],
)
# 示例:短输入,选择所有示例。
print(dynamic_prompt.format(adjective="big"))
# 示例:长输入,选择较少示例。
long_string = "big and huge and massive and large and gigantic and tall and much much much much much bigger than everything else"
print(dynamic_prompt.format(adjective=long_string))
# 添加新示例
new_example = {"input": "big", "output": "small"}
dynamic_prompt.example_selector.add_example(new_example)
print(dynamic_prompt.format(adjective="enthusiastic"))
应用场景分析
- 对话系统:在选择历史对话时,根据用户输入长度动态调整示例数量。
- 文本生成:在长文本生成任务中,通过动态示例选择确保生成的文本不超出上下文长度。
- 教育和训练:训练模型时,使用不同长度的输入进行提示参考。
实践建议
- 设置合理的最大长度,以确保提示能够在限定的上下文窗口内运行。
- 根据具体任务调整和优化示例选择策略,以适配不同的输入长度。
- 持续监控和评估效果,并根据需求进行动态调整示例集。
如果遇到问题欢迎在评论区交流。
—END—