cnn卷积理解

首先输入图像是28*28处理好的图。

第一层卷积:用5*5的卷积核进行卷积,输入为1通道,输出为32通道。即第一层的输入为:28*28图,第一层有32个不同的滤波器,对同一张图进行卷积,然后输出为32张特征图。需要32张特征图原因是能表示更多的特征。

第二层卷积:卷积核同样为5*5,但是输入为32通道,输出为64通道。即以第一层卷积池化激活后的图作为输入,有64个不同的滤波器,对32通道的图进行卷积,输出为64个特征图。

转载于:https://www.cnblogs.com/smartwhite/p/7867948.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值