1.准备数据文件
aa.log(注意空格)
wenxin xaiowen wangwu
xiaowen xiaoxin wenxin
xiaowen zhangshan lisi
2. 启动Hadoop集群
3. 将数据文件上传到HDFS文件系统中
[root@Cluster00 ~]# hdfs dfs -mkdir /wordcount
[root@Cluster00 ~]# hdfs dfs -put aa.lpg /wordcount
3.开发MapReduce
引入相关依赖
<properties>
<hadoop.version>2.7.3</hadoop.version>
</properties>
<dependencies>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-mapreduce-client-core</artifactId>
<version>${hadoop.version}</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-common</artifactId>
<version>${hadoop.version}</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-hdfs</artifactId>
<version>${hadoop.version}</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-mapreduce-client-common</artifactId>
<version>${hadoop.version}</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-mapreduce-client-jobclient</artifactId>
<version>${hadoop.version}</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-mapreduce-examples</artifactId>
<version>${hadoop.version}</version>
</dependency>
</dependencies>
开发一个job作业
开发map模块
//map阶段 hadoop包装 long->LongWritable String->Text
public static class WordCountMap extends Mapper<LongWritable, Text,Text, IntWritable>{
@Override//inputFormat 输出一次就会调用一次这个方法
//参数1:行首字母的偏移量 参数2:当前行的值
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String[] words=value.toString().split(" ");
for(String word:words){
context.write(new Text(word),new IntWritable(1));
}
// super.map(key, value, context);
}
}
开发reduce模块
//reduuce阶段
public static class WordCountReduce extends Reducer<Text,IntWritable,Text,IntWritable>{
@Override
protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
int sum=0;
for(IntWritable value:values){
sum+=value.get();
}
//输出结果
context.write(key,new IntWritable(sum));
// super.reduce(key, values, context);
}
}
开发job模块
public static void main(String[] args) throws Exception{
///指定job作业任务的对象是谁
ToolRunner.run(new wordcount(),args);
}
public int run(String[] strings) throws Exception{
//创建job作业对象
Job job=Job.getInstance(getConf());
job.setJarByClass(wordcount.class);
//设置inputFormat
job.setInputFormatClass(TextInputFormat.class);
TextInputFormat.addInputPath(job,new Path("/wordcount/aa.log"));
//设置map
job.setMapperClass(WordCountMap.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class);
//设置shuffle
//设置reduce
job.setReducerClass(WordCountReduce.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
//设置outputFormat
job.setOutputFormatClass(TextOutputFormat.class);
// 一定要保证outputFormate输出结果必须不存在
TextOutputFormat.setOutputPath(job,new Path("/wordcount/result"));
//提交job作业
// job.submit();
boolean status=job.waitForCompletion(true);
System.out.println("wordcount"+status);
return 0;
}
完整代码
package com.wenxin.wordcount;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
import java.io.IOException;
public class wordcount extends Configured implements Tool {
public static void main(String[] args) throws Exception{
///指定job作业任务的对象是谁
ToolRunner.run(new wordcount(),args);
}
public int run(String[] strings) throws Exception{
//创建job作业对象
Job job=Job.getInstance(getConf());
job.setJarByClass(wordcount.class);
//设置inputFormat
job.setInputFormatClass(TextInputFormat.class);
TextInputFormat.addInputPath(job,new Path("/wordcount/aa.log"));
//设置map
job.setMapperClass(WordCountMap.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class);
//设置shuffle
//设置reduce
job.setReducerClass(WordCountReduce.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
//设置outputFormat
job.setOutputFormatClass(TextOutputFormat.class);
// 一定要保证outputFormate输出结果必须不存在
TextOutputFormat.setOutputPath(job,new Path("/wordcount/result"));
//提交job作业
// job.submit();
boolean status=job.waitForCompletion(true);
System.out.println("wordcount"+status);
return 0;
}
//map阶段 hadoop包装 long->LongWritable String->Text
public static class WordCountMap extends Mapper<LongWritable, Text,Text, IntWritable>{
@Override//inputFormat 输出一次就会调用一次这个方法
//参数1:行首字母的偏移量 参数2:当前行的值
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String[] words=value.toString().split(" ");
for(String word:words){
context.write(new Text(word),new IntWritable(1));
}
// super.map(key, value, context);
}
}
//reduuce阶段
public static class WordCountReduce extends Reducer<Text,IntWritable,Text,IntWritable>{
@Override
protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
int sum=0;
for(IntWritable value:values){
sum+=value.get();
}
//输出结果
context.write(key,new IntWritable(sum));
// super.reduce(key, values, context);
}
}
}
执行作业
将项目上传到yarn集群中
执行命令:
[root@Cluster00 ~]# yarn jar hadoop-wordcount-1.0-SNAPSHOT.jar com.wenxin.wordcount.wordcount
执行命令查看结果:
[root@Cluster00 ~]# hdfs dfs -cat /wordcount/result/part-r-00000