最近想学一下图卷积GCN,教程竟然都是pyTorch的,作为一名重度TensorFlow用户太崩溃了,没办法只能学一波pyTorch了。
首先在pyTorch中,一个张量(tensor)可能会被部署在CPU上,也可能被部署在GPU上。它们的数据类型是不同的。即使是同一个数据,被部署在不同位置,那么它的数据类型也是不一样的。数据类型如下:
import torch
'''
# pyTorch的数据类型
# -------------------------------------- #
#(1)CUP上的数据类型
# torch.FloatTensor (float32)
# torch.DoubleTensor (float64)
# torch.ByteTensor (float16)
# torch.CharTensor (uint8)
# torch.ShortTensor (int8)
# torch.InitTensor (int16)
# torch.LongTensor (int64)
# -------------------------------------- #
#(2)GUP上的数据类型
# torch.cuda.FloatTensor (float32)
# torch.cuda.DoubleTensor (float64)
# torch.cuda.ByteTensor (float16)
# torch.cuda.CharTensor (uint8)
# torch.cuda.ShortTensor (int8)
# torch.cuda.InitTensor (int16)
# torch.cuda.LongTensor (int64)
# -------------------------------------- #
'''
1. 查看数据类型
查看张量数据类型: tensor.type()

最低0.47元/天 解锁文章
3565

被折叠的 条评论
为什么被折叠?



