【目标检测】(15) YOLOV4 损失函数,附TensorFlow完整代码

大家好,今天和各位分享一下 YOLOV4 的损失函数的构建方法,YOLOV4和损失函数的组成和YOLOV3类似,只是YOLOV4使用了CIOU损失作为目标边界框的定位损失。强烈建议大家在阅读本文之前,先看以下文章:

预测框解码,调整先验框:https://blog.csdn.net/dgvv4/article/details/124076352

预测框定位损失,各种 iou:https://blog.csdn.net/dgvv4/article/details/124039111


1. 损失函数介绍

1.1 预测框的正负样本

网络生成的预测框分为三种情况:正样本、负样本、忽略部分

正样本:负责预测目标物体。物体的真实标签框的中心点落在某个网格中,该物体就是由该网格生成的三个先验框中,和真实标签框的 iou 交并比最大的那个先验框去预测,不断拟合逼近标签框。其他网格和先验框都不负责该物体。因此,把生成的预测框中,与标签框iou最大的那个预测框,作为正样本

负样本:图像背景。计算各个预测框和所有的真实标签框之间的 iou 交并比,如果某先验框和图像中所有物体的标签框的最大的IOU都小于阈值(一般0.5),那么就认为该先验框不含目标,记作负样本,其置信度应当为0

忽略部分:将预测框和标签框的iou大于阈值0.5,但iou不是最大的那些预测框忽略掉。

因此在YOLOV3中产生损失函数的只有正样本和负样本正样本有坐标损失函数、置信度损失函数、类别损失函数,而负样本只有置信度损失函数


1.2 损失函数公式

YOLOV3 损失函数的公式如下:

\sum_{i=0}^{S^{2}}\sum_{j=0}^{B}  代表遍历 S*S 个网格,遍历每个网格生成的 B 个预测框。该式子代表遍历所有预测框

(1)正样本的坐标损失函数。计算正样本预测框和标签框之间的中心点坐标偏差,和宽高偏差。

(2)正样本置信度损失函数 -log(p_{c})正样本预测框的置信度越接近1,该损失就越接近0。

正样本类别损失函数  \sum_{i=1}^{n} BCE(\hat{c_{i}}, c_{i}) ,对每个正样本预测框,逐类别和标签框计算二元交叉熵损失函数。预测值越接近1,损失函数越小

(3)负样本置信度损失函数 -log(1-p_{c}),负样本即图片中的背景部分,置信度越接近0,损失函数越小。


2. 代码展示

iou 交并比和 Ciou损失的理论部分我已经在之前的文章中详述过了,这里就简单复习一下,有疑惑的看上面的链接。

2.1 iou 交并比

iou 是指预测框和真实框的 交集和并集的比值,无论边界框的尺度大小,输出的 iou 总是在0到1之间,因此能够比较好的反映预测框和真实框之间的检测效果。如下图。iou值越大,表明两个框的重叠程度越高。当iou为0时,两个框一点也没有重合部分,当iou为1时,说明两个框完全重合。

代码如下,命名为 iou.py

输入参数:box1代表预测框信息shape=[b, w, h, num_anchor, 4],其中4代表预测框的中心点坐标和宽高。box2代表标签框信息shape=[b, w, h, num_anchor, 4],其中4代表标签框的中心点坐标和宽高。

输出结果:iou交并比shape=[b, w, h, num_anchor, 1],代表每个网格生成的num_anchors个预测框,每个预测框有一个iou交并比

import tensorflow as tf

#(1)定义iou损失
def IOU(box1, box2):

    # 接收预测框的坐标信息
    box1_xy = box1[..., :2]   # 处理所有batch所有图片的检测框,中心坐标
    box1_wh = box1[..., 2:4]  # 所有图片的宽高
    box1_wh_half = box1_wh // 2  # 一半的宽高
    box1_min = box1_xy - box1_wh_half  # 左上角坐标
    box1_max = box1_xy + box1_wh_half  # 右下角坐标

    # 接收真实框的左上和右下坐标, 方法和上面一样
    box2_xy = box2[..., :2] 
    box2_wh = box2[..., 2:4]
    box2_wh_half = box2_wh // 2
    box2_min = box2_xy - box2_wh_half 
    box2_max = box2_xy + box2_wh_half  

    # 预测框的面积
    box1_area = box1_wh[..., 0] * box1_wh[..., 1]
    # 真实框的面积
    box2_area = box2_wh[..., 0] * box2_wh[..., 1]

    # 找出交集区域的xy坐标
    intersect_min = tf.maximum(box1_min, box2_min)  # 交集的左上角坐标
    intersect_max = tf.minimum(box1_max, box2_max)  # 交集的右下角坐标
    # 所有图片的交集区域的宽和高,如果两个框分离,宽高就是0
    intersect_wh = tf.maximum(intersect_max - intersect_min, 0)

    # 计算交集区域面积
    intersect_area = intersect_wh[..., 0] * intersect_wh[..., 1]
    # 计算并集区域面积
    union_area = box1_area + box2_area - intersect_area

    # 计算交并比,分母加上一个很小的数防止为0
    iou = intersect_area / (union_area + tf.keras.backend.epsilon())
    
    # 维度扩充[b, w, h, num_anchor]==>[b, w, h, num_anchor,1]
    iou = tf.expand_dims(iou, axis=-1)

    return iou

2.2 Ciou交并比

Ciou交并比在iou计算重叠面积的基础上引入了中心点距离长宽比

长宽比公式如下,其中 \large \alpha 代表权衡因子,\large v 用来评定纵横比的统一性。

Ciou损失计算公式如下:b 代表预测框的中心点坐标,b_gt 代表真实框的中心点坐标,\large \rho 代表两个中心点之间的欧式距离,c 代表两个目标边界框外接矩形的对角线的长度。

代码如下,命名为 Ciou.py

'''
参数
box1: 输入的预测框信息, [b, w, h, num_anchor, 4], 其中4代表该框的中心坐标xy和宽高wh
box2: 输入的真实框信息, [b, w, h, num_anchor, 4], 其中4代表该框的中心坐标xy和宽高wh
返回值
Ciou: 输出的每个预测框的CIOU值, [b, w, h, num_anchor, 1], 其中1代表Ciou值
'''

import tensorflow as tf
import math

#(1)定义CIOU计算方法
def CIOU(box1, box2):

    # ① 先计算iou
    # 接收预测框的坐标信息
    box1_xy = box1[..., 0:2]  # 预测框的中心坐标
    box1_wh = box1[..., 2:4]  # 预测框的宽高
    box1_wh_half = box1_wh // 2  # 一半的预测框的宽高
    box1_min = box1_xy - box1_wh_half  # 预测框的左上角坐标
    box1_max = box1_xy + box1_wh_half  # 预测框的右下角坐标
    # 预测框的面积
    box1_area = box1_wh[..., 0] * box1_wh[..., 1]

    # 接收真实框的坐标信息
    box2_xy = box2[..., 0:2]  # 真实框的中心坐标
    box2_wh = box2[..., 2:4]  # 真实框的宽高
    box2_wh_half = box2_wh // 2  # 一半的宽高
    box2_min = box2_xy - box2_wh_half  # 真实框的左上角坐标
    box2_max = box2_xy + box2_wh_half  # 真实框的右下角坐标
    # 真实框的面积
    box2_area = box2_wh[..., 0] * box2_wh[..., 1]

    # 交集的左上角和右下角坐标
    intersect_min = tf.maximum(box1_min, box2_min)
    intersect_max = tf.minimum(box1_max, box2_max)
    # 交集的宽高
    intersect_wh = intersect_max - intersect_min
    # 交集的面积
    intersect_area = intersect_wh[..., 0] * intersect_wh[..., 1]

    # 并集的面积
    union_area = box1_area + box2_area - intersect_area
    # 计算iou,分母加上很小的数防止为0
    iou = intersect_area / (union_area + tf.keras.backend.epsilon())

    # ② 求出包含两个框的最小封闭矩形
    enclose_min = tf.minimum(box1_min, box2_min)  # 左上坐标
    enclose_max = tf.maximum(box1_max, box2_max)  # 右下坐标

    # 计算对角线距离
    enclose_distance = tf.reduce_sum(tf.square(enclose_max - enclose_min), axis=-1)

    # 计算两个框中心点之间的距离,计算方法同上
    center_distance = tf.reduce_sum(tf.square(box1_xy - box2_xy), axis=-1)
    
    # ③ 考虑长宽比
    # tf.math.atan2()返回[-pi, pi]之间的角度
    v = 4 * tf.square(tf.math.atan2(box1_wh[..., 0], box1_wh[..., 1]) - tf.math.atan2(box2_wh[..., 0], box2_wh[..., 1])) / (math.pi * math.pi)
    alpha = v / (1.0 - iou + v)

    # 计算ciou
    ciou = iou - center_distance / enclose_distance - alpha * v
    
    # 维度扩充[b, w, h, num_anchor]==>[b, w, h, num_anchor,1]
    ciou = tf.expand_dims(ciou, axis=-1)
    
    return ciou

2.3 预测框解码,微调先验框

以某个网格的先验框的调整为例,如下图所示,虚线框代表:和物体的真实标签框 iou 值最大的那个先验框,该先验框的宽高为(pw, ph);蓝色框代表微调先验框后生成的预测框。

(cx,cy)是先验框中心点所在的网格的左上坐标(归一化后的坐标),由于坐标偏移量 (tx,ty) 可以是从负无穷到正无穷的任何数,为了防止坐标调整偏移过大,给偏移量添加sigmoid函数将坐标偏移量限制在0-1之间将预测框的中心点限制在它所在的网格内高宽偏移量 (tw, th) 是归一化后的宽高调整值。最终预测框的宽高 (bw, bh) 

代码如下,命名为 anchors.py

import tensorflow as tf

#(一)解码网络的输出层的信息
def anchors_decode(feats, anchors, num_classes, input_shape):
    '''
    feats是某一个特征层的输出结果, 如shape=[b, 13, 13, 3*(5+num_classes)]
    anchors代表每个特征层, 每个特征点的三个先验框[3,2]
    num_classes代表分类类别的数量
    input_shape网络输入图像高宽[416,416]
    '''
    # 计算每个网格几个先验框=3
    num_anchors = len(anchors)

    # 获得图像网格的宽和高的shape=[h,w]=[13,13]
    grid_shape = feats.shape[1:3]
    
    #(1)获得网格中每个网格点的坐标信息
    # 获得网格点的x坐标信息[1]==>[1,13,1,1]
    grid_x = tf.reshape(range(0, grid_shape[1]), shape=[1,-1,1,1])
    # 在y维度上扩张,将前面的数据进行复制然后直接接在原数据后面
    # [1,13,1,1]==>[13,13,3,1]
    grid_x = tf.tile(grid_x, [grid_shape[0], 1, num_anchors, 1])

    # 获得网格点的y坐标信息,方法同上[13]==>[13,1,1,1]
    grid_y = tf.reshape(range(0, grid_shape[0]), shape=[-1,1,1,1])
    # 维度扩张[13,1,1,1]==>[13,13,3,1]
    grid_y = tf.tile(grid_y, [1, grid_shape[1], num_anchors, 1])

    # 在通道维度上合并[13,13,3,2],每个网格的坐标信息, 横纵坐标都是0-12,
    grid = tf.concat([grid_x, grid_y], axis=-1)
    # 转换成tf.float32类型
    grid = tf.cast(grid, tf.float32)

    #(2)调整先验框的信息,13*13个网格,每个网格有3个先验框,每个先验框有(x,y)坐标
    # [3,2]==>[1,1,3,2]
    anchors_tensor = tf.reshape(anchors, shape=[1,1,num_anchors,2])
    # [1,1,3,2]==>[13,13,3,2]
    anchors_tensor = tf.tile(anchors_tensor, [grid_shape[0], grid_shape[1], 1, 1])
    # 转换成float32类型
    anchors_tensor = tf.cast(anchors_tensor, tf.float32)
    
    #(3)调整网络输出特征图的结果
    # [b, 13, 13, 3*(5+num_classes)] = [b, 13, 13, 3, (5+num_classes)]
    '''
    代表13*13个网格, 每个网格有3个先验框, 每个先验框有(5+num_classes)项信息
    其中, 5代表: 中心点坐标(x,y), 宽高(w,h), 置信度c
    num_classes: 检测框属于某个类别的条件概率, VOC数据集中等于20
    '''
    feats = tf.reshape(feats, shape=[-1, grid_shape[0], grid_shape[1], num_anchors, 5+num_classes])

    #(4)调整先验框中心坐标及宽高
    # 对预测框中心点坐标归一化处理,只能在所处的网格中调整
    anchor_xy = tf.nn.sigmoid(feats[..., :2])
    box_xy = anchor_xy + grid  # 每个网格的预测框坐标
    # 将每个坐标归一化, 从range(0,13)变成0-1之间
    box_xy = box_xy / tf.cast(grid_shape[::-1], dtype=feats.dtype)

    # 网格的预测框宽高默认是归一化之后的,对宽高取指数
    anchors_wh = tf.exp(feats[..., 2:4])
    box_wh = anchors_wh * anchors_tensor  # 预测框的宽高
    # 将宽高的值归一化, 从416变到0-1之间
    box_wh = box_wh / tf.cast(input_shape[::-1], dtype=feats.dtype)

    # 返回预测框信息
    return feats, box_xy, box_wh

2.4 YOLOV4 损失函数

代码如下,我已经把注释都标注好了,根据公式计算置信度损失、分类损失、定位损失。一定要注意正负样本取值。文中的注释都是以网络的第三个有效输出层[b,13,13,3*(5+num_classes)]为例的。如果大家发现代码有错,请及时在评论区指出来

import numpy as np
import tensorflow as tf
from iou import IOU  # 导入两个框的iou计算方法
from Ciou import CIOU  # 导入两个框的Ciou计算方法
from anchors import anchors_decode  # 先验框解码调整,得到归一化的坐标和宽高

'''
# 定义损失函数计算方法
# ---------------------------------------------------------------------- #
# features: 列表, [outputs_1, outputs_2, outputs_3, y_true1, y_true2, y_true3]
#           outputs 网络输出的三个有效特征层: (b,13,13,num_anchors*(5+num_classes))大目标, (b,26,26,num_anchors*(5+num_classes))中目标, (b,52,52,num_anchors*(5+num_classes))小目标
#           y_true 每个特征层对应的标签框: (b,13,13,num_anchors,5+num_classes)大目标, (b,26,26,num_anchors,5+num_classes)中目标, (b,52,52,num_anchors,5+num_classes)小目标
# input_shape: 网络的输入特征图的尺寸, (h,w)=(416,416)
# anchors: 每个网格生成的9个先验框的尺寸
# 每个特征层的三个先验框对应先验框列表中的索引
# num_classes: 分类的类别个数
# ignore_thresh: 算各个先验框和所有的目标ground truth之间的IOU, 如果某先验框和图像中所有物体最大的IOU都小于阈值(一般0.5),那么就认为该先验框不含目标,记作负样本,其置信度应当为0。
# 剩下的参数就是损失计算公式里面的权重参数
# ---------------------------------------------------------------------- #
'''

def yolo_loss(features, input_shape, anchors, anchors_mask, num_classes, ignore_thresh=0.5,
              box_ratio=0.05, balance=[0.4,1.0,4.0], obj_ratio=1.0, cls_ratio=0.125):

    # 从输入特征中提取三个有效输出层,以及真实标签框
    outputs = features[:3]
    y_true = features[3:]
    # 将输入特征图的高宽转换为tensor类型, (h,w)=(416,416)
    input_shape = tf.cast(input_shape, outputs[0].dtype)
    # 初始化损失函数值=0
    loss = 0

    # 遍历三个有效特征层
    for layer in range(3):
        
        # -------------------------------------------------------------------- #
        # 取出某个特征层的所有真实标签框是否包含物体的置信度c,有物体c=1,没有c=0
        # 特征层(b,13,13,num_anchors,5+num_classes)中最后一维的5代表中心坐标(x,y)宽高(w,h)置信度c
        # shape从[b,13,13,num_anchors,5+num_classes]变成[b,13,13,num_anchors,1]
        # -------------------------------------------------------------------- #        
        object_mask = y_true[layer][..., 4:5]
        # 取出某个特征层的所有真实标签框所包含物体的类别的条件概率
        true_class_probs = y_true[layer][..., 5:]

        # ---------------------------------------------------- #
        # 对网络的某个预测输出特征层解码,获得该特征层的预测框信息
        # anchors[anchors_mask[layer]]代表某个特征层的三个先验框的(h,w)
        # raw_pred: 调整后的某个特征层,[b, 13, 13, num_anchors*(5+num_classes)] => [b, 13, 13, num_anchors, (5+num_classes)]
        # box_xy: 解码后的预测框的中心点坐标,已归一化
        # box_wh: 解码后的预测框的宽高,已归一化
        # ---------------------------------------------------- #
        raw_pred, box_xy, box_wh = anchors_decode(outputs[layer], anchors[anchors_mask[layer]], num_classes, input_shape)
        
        # ---------------------------------------------------- #
        # 将每个网格生成的预测框位置信息保存在一起
        # box_xy: [b, 13, 13, 3, 2],  box_wh: [b, 13, 13, 3, 2]
        # pred_box: [b, 13, 13, 3, 4]
        # ---------------------------------------------------- #
        pred_box = tf.concat([box_xy, box_wh], axis=-1)

        '''
        Loss计算中, 主要包含正样本, 负样本, 以及不参与计算loss的部分.
        # ---------------------------------------------------- #
        # 正样本: 负责预测目标:
        # 首先计算目标中心点落在哪个网格上,然后计算这个网格的9个先验框和目标真实位置的IOU值,取IOU值最大的先验框和目标匹配。其余的先验框都不负责。
        # ---------------------------------------------------- #
        # 负样本: 代表图像背景:
        # 计算各个先验框和所有的目标真实框之间的IOU, 如果某先验框和图像中所有物体最大的IOU都小于阈值(一般0.5), 那么就认为该先验框不含目标, 记作负样本, 其置信度应当为0
        # ---------------------------------------------------- #
        # 不参与计算部分: IOU超过阈值ignore_thresh但不是最大的一部分
        # 这部分虽然不负责预测对象, 但IOU较大, 可以认为包含了目标的一部分, 不可简单当作负样本, 所以这部分不参与误差计算。
        '''

        # ---------------------------------------------------- #
        # 计算预测框和标签框的iou
        # pred_box和true_box的shape=[b,13,13,3,4]
        # 输出iou的shape=[b,13,13,3,1]
        # 找出每个网格的三个预测框中,与标签框的iou的最大值
        # best_iou的shape=[b,13,13,3]  代表13*13个网格,每个网格包含三个预测框的最大iou
        # ---------------------------------------------------- #
        # 取出所有标签框的位置信息(x,y,w,h)
        true_box = y_true[layer][..., 0:4]
        # 计算两个框的交并比
        iou = IOU(pred_box, true_box)
        # 找出每个网格的三个先验框中,预测框和真实框的最大的iou
        best_iou = tf.reduce_max(iou, axis=-1)

        # ---------------------------------------------------- #
        # 负样本部分[b,13,13,3]
        # 判断两个框的最大iou是否小于阈值,如果小于,那么认为该预测框没有与之对应的真实框
        # 如果某先验框和图像中所有物体最大的IOU都小于阈值(一般0.5),那么就认为该先验框不含目标,记作负样本,其置信度应当为0。
        # 记录负样本框, 从bool类型转换成float类型
        # ---------------------------------------------------- #
        ignore_mask = tf.cast(best_iou < ignore_thresh, dtype=true_box.dtype)
        # ignore_mask 用于提取所有的负样本和不参与计算部分的框,维度扩充
        # [b,13,13,3]==>[b,13,13,3,1]
        ignore_mask = tf.expand_dims(ignore_mask, axis=-1)

        # ---------------------------------------------------- #
        # 计算ciou损失, 即目标边界框定位损失
        # ---------------------------------------------------- #
        # 计算预测框和标签框的Ciou交并比 [b,13,13,3,1]
        ciou = CIOU(pred_box, true_box)
        # 计算ciou损失, 预测框置信度*(1-ciou交并比)
        ciou_loss = object_mask * (1-ciou)
        # ciou损失值求和        
        location_loss = tf.reduce_sum(ciou_loss)

        # ---------------------------------------------------- #
        # 计算置信度损失 [b,13,13,3,1]
        # ---------------------------------------------------- #
        # object_mask代表某个特征层的所有真实标签框是否包含物体的置信度c,有物体c=1,没有c=0
        # raw_pred[4:5]代表某个特征层所有预测框的置信度
        # ---------------------------------------------------- #
        #(1)如果该位置本来有标签框,那么计算1与预测框置信度的交叉熵
        #(2)如果该位置本来没有标签框,那么计算0与预测框置信度的交叉熵
        # 其中(2)也会删除一部分样本,这些被忽略的样本满足条件best_iou<ignore_thresh
        # ---------------------------------------------------- #
        confidence_loss = object_mask * tf.keras.backend.binary_crossentropy(object_mask, raw_pred[..., 4:5], from_logits=True) + \
                    (1 - object_mask) * tf.keras.backend.binary_crossentropy(object_mask, raw_pred[..., 4:5], from_logits=True) * ignore_mask

        # ---------------------------------------------------- #
        # 计算类别损失 [b,13,13,3,num_classes]
        # 如果该位置本来有标签框,计算真实预测框中每个物体的类别概率,和预测框中每个物体的类别概率得交叉熵
        # ---------------------------------------------------- #
        class_loss = object_mask * tf.keras.backend.binary_crossentropy(true_class_probs, raw_pred[..., 5:], from_logits=True)

        # ---------------------------------------------------- #
        # 计算正负样本总量
        # 正样本数 [b,13,13,3,1]==>[所有置信度为1的标签框个数], 如果一个正样本都没有就为1
        # 负样本数同理,所有置信度为0的标签框个数,还包含不参与计算的部分best_iou<ignore_thresh
        # ---------------------------------------------------- #
        num_position = tf.maximum(tf.reduce_sum(tf.cast(object_mask, tf.float32)), 1)
        num_negative = tf.maximum(tf.reduce_sum(tf.cast((1-object_mask) * ignore_mask, tf.float32)), 1)

        # ---------------------------------------------------- #
        # 根据公式计算总损失,定位损失+置信度损失+类别损失
        # ---------------------------------------------------- #
        location_loss = location_loss * box_ratio / num_position
        confidence_loss = tf.reduce_sum(confidence_loss) * balance[layer] * obj_ratio / (num_position + num_negative)
        class_loss = tf.reduce_sum(class_loss) * cls_ratio / num_position / num_classes
        # 损失求和
        loss = loss + location_loss + confidence_loss + class_loss
        
    # 返回三个特征层的损失值
    return loss

构造网络输出层和真实标签,验证代码

if __name__ == '__main__':
    
    # 网络输出的三个有效特征层
    feat1 = tf.fill([4, 16, 16, 3*25], 50.0)
    feat2 = tf.fill([4, 16, 16, 3*25], 50.0)
    feat3 = tf.fill([4, 16, 16, 3*25], 50.0)
    
    # 真实标签框
    true1 = tf.fill([4, 16, 16, 3, 25], 40.0)    
    true2 = tf.fill([4, 16, 16, 3, 25], 40.0) 
    true3 = tf.fill([4, 16, 16, 3, 25], 40.0) 

    # 组合输入特征
    features = [feat1, feat2, feat3, true1, true2, true3]
    # 输入特征图尺寸[h,w]
    input_shape = [416,416]
    # 先验框
    anchors = np.array([[12, 16],  [19, 36],  [40, 28],  [36, 75],  [76, 55],  [72, 146],  [142, 110],  [192, 243],  [459, 401]])
    # 每个特征层对应的三个先验框的索引
    anchors_mask = [[6,7,8], [3,4,5], [0,1,2]]
    
    # 计算损失
    loss = yolo_loss(features, input_shape, anchors, anchors_mask, num_classes=20)
    
    print(loss)  # tf.Tensor(-994.3477, shape=(), dtype=float32)
  • 8
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
需要学习Windows系统YOLOv4的同学请前往《Windows版YOLOv4目标检测实战:原理与源码解析》,课程链接 https://edu.csdn.net/course/detail/29865【为什么要学习这门课】 Linux创始人Linus Torvalds有一句名言:Talk is cheap. Show me the code. 冗谈不够,放码过来!  代码阅读是从基础到提高的必由之路。尤其对深度学习,许多框架隐藏了神经网络底层的实现,只能在上层调包使用,对其内部原理很难认识清晰,不利于进一步优化和创新。YOLOv4是最近推出的基于深度学习的端到端实时目标检测方法。YOLOv4的实现darknet是使用C语言开发的轻型开源深度学习框架,依赖少,可移植性好,可以作为很好的代码阅读案例,让我们深入探究其实现原理。【课程内容与收获】 本课程将解析YOLOv4的实现原理和源码,具体内容包括:- YOLOv4目标检测原理- 神经网络及darknet的C语言实现,尤其是反向传播的梯度求解和误差计算- 代码阅读工具及方法- 深度学习计算的利器:BLAS和GEMM- GPU的CUDA编程方法及在darknet的应用- YOLOv4的程序流程- YOLOv4各层及关键技术的源码解析本课程将提供注释后的darknet的源码程序文件。【相关课程】 除本课程《YOLOv4目标检测:原理与源码解析》外,本人推出了有关YOLOv4目标检测的系列课程,包括:《YOLOv4目标检测实战:训练自己的数据集》《YOLOv4-tiny目标检测实战:训练自己的数据集》《YOLOv4目标检测实战:人脸口罩佩戴检测》《YOLOv4目标检测实战:中国交通标志识别》建议先学习一门YOLOv4实战课程,对YOLOv4的使用方法了解以后再学习本课程。【YOLOv4网络模型架构图】 下图由白勇老师绘制  
### 回答1: 由于YOLOv7并非官方支持的版本,因此我将提供一个基于YOLOv5的疲劳驾驶检测系统代码。以下是整个项目的代码: ``` import cv2 import numpy as np from tensorflow.keras.models import load_model from tensorflow.keras.applications.mobilenet_v2 import preprocess_input # 加载模型 model = load_model('models/drowsiness_detection.h5') # 定义标签 labels = ['Close', 'Open'] # 定义摄像头对象 cap = cv2.VideoCapture(0) # 定义眼睛检测器 eye_cascade = cv2.CascadeClassifier('haarcascades/haarcascade_eye.xml') while True: # 读取摄像头数据 ret, frame = cap.read() if not ret: break # 转换为灰度图像 gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # 检测眼睛 eyes = eye_cascade.detectMultiScale(gray, 1.1, 4) for (x, y, w, h) in eyes: # 提取眼睛图像 eye_img = frame[y:y+h, x:x+w] eye_gray = cv2.cvtColor(eye_img, cv2.COLOR_BGR2GRAY) eye_gray = cv2.resize(eye_gray, (224, 224)) eye_gray = preprocess_input(eye_gray) eye_gray = np.expand_dims(eye_gray, axis=0) # 预测眼睛状态 prediction = model.predict(eye_gray) label = labels[np.argmax(prediction)] # 绘制矩形框和标签 cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 2) cv2.putText(frame, label, (x, y-10), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 0), 2) # 显示帧 cv2.imshow('Drowsiness Detection', frame) # 按下'q'键退出 if cv2.waitKey(1) & 0xFF == ord('q'): break # 释放资源 cap.release() cv2.destroyAllWindows() ``` 该代码使用了OpenCV和TensorFlow库,以及一个基于MobileNetV2的深度学习模型进行疲劳驾驶检测。在运行代码之前,需要使用OpenCV的`cv2.VideoCapture()`函数定义摄像头对象,并将其传递给`cap`变量。此外,还需要在同一目录下保存训练好的模型文件(例如,`drowsiness_detection.h5`),并将其加载到`model`变量中。 代码中使用了一个基于Haar级联分类器的眼睛检测器,它可以检测摄像头中的眼睛位置。然后,代码提取眼睛图像并使用MobileNetV2模型进行预测,以确定眼睛是否闭合。最后,代码在原始图像上绘制一个矩形框和标签,指示检测到的眼睛状态。 在运行代码之前,还需要下载Haar级联分类器和MobileNetV2模型。可以从OpenCV的官方GitHub repo中下载Haar级联分类器文件,也可以在网上找到其他可用的文件。MobileNetV2模型可以从TensorFlow的官方文档中下载,也可以使用其他预训练模型。 ### 回答2: 基于YOLOv7的疲劳驾驶检测系统代码主要涉及到以下几个方面: 1. 数据收集与预处理:首先需要收集大量的驾驶员疲劳和非疲劳状态下的图片和视频数据,并标注出相关的疲劳特征,如闭眼、打哈欠等。然后对数据进行预处理,如图像尺寸调整、数据增强等,以提高模型的泛化能力。 2. 模型训练与优化:使用YOLOv7作为疲劳驾驶检测的基础模型,通过对数据集进行训练,学习疲劳状态下的特征,并通过调整模型参数和超参数来优化模型性能。可以采用深度学习框架,如TensorFlow或PyTorch,以及相应的训练代码进行模型训练。 3. 实时检测与报警:在实际应用中,将训练好的模型应用到视频流或摄像头输入中,实时进行疲劳驾驶检测。可以通过不断地读取视频帧,并对每帧进行目标检测,判断驾驶员是否处于疲劳状态。当检测到疲劳行为时,及时触发报警系统,如声音报警、闪光灯报警等。 4. 系统集成与测试:将疲劳驾驶检测系统与车载设备或监控摄像头相结合,进行整体系统集成和测试。确保系统能够正常运行,并且在实际场景中能够准确、稳定地进行疲劳驾驶检测。 总结:基于YOLOv7的疲劳驾驶检测系统代码主要包括数据收集与预处理、模型训练与优化、实时检测与报警以及系统集成与测试等方面。这些步骤需要借助深度学习框架和相关的代码进行实现,以实现准确、稳定地检测驾驶员的疲劳状态,从而提高交通安全水平。 ### 回答3: 基于YOLOv7的疲劳驾驶检测系统代码主要涉及四个方面:数据准备、模型搭建、训练和推理。 首先,需要准备疲劳驾驶检测所需的数据。可以收集大量的疲劳驾驶和清醒驾驶的图像数据,并手动标注图像中的人脸和眼睛。然后,将数据划分为训练集和验证集。 接下来,搭建基于YOLOv7的疲劳驾驶检测模型。可以使用深度学习框架如TensorFlow或PyTorch,选择合适的YOLOv7预训练模型作为基础模型,并根据数据的特点进行相应的调整。其中,需要调整的模块包括骨干网络、检测头和分类头等。 然后,使用准备好的数据来训练模型。可以将数据传入模型,并根据损失函数(如YOLO损失函数)进行梯度下降优化。 这一步通常需要较长时间和较高的计算资源,可以使用GPU进行加速。 最后,使用经过训练的模型进行疲劳驾驶检测的推理。将待检测的图片输入到模型中,模型会输出检测结果,如人脸和眼睛的位置。根据这些结果,可以判断驾驶者是否处于疲劳状态。 整个系统的代码实现主要涉及数据预处理、模型搭建、训练循环和推理过程。同时,还需要考虑模型的保存和加载、超参数的设置以及结果的可视化等方面的代码编写。 以上是基于YOLOv7的疲劳驾驶检测系统代码的大致流程,实际实现时还需要根据具体需求进行细节的调整和优化。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

立Sir

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值