李航统计学习 第二章 感知机

第二章 感知机

感知机是二类分类的线性分类模型,输入为特征向量,输出为实例的类别,感知机对应于输入空间(特征空间)中将
实例划分为正负两类的超平面

2.1感知机模型

假设输入空间(特征空间)是 xRn x ⊆ R n ,输出空间为 y=+1,1 y = + 1 , − 1 ,由输入空间到输出空间的如下函数:

f(x)=sign(wx+b) f ( x ) = s i g n ( w ⋅ x + b )

称为感知机,其中 w w b为感知机模型参数 wRn w ∈ R n 叫做权值或者权向量, bR b ∈ R 叫做偏置,
wx w ⋅ x 表示 w w x的内积 sign s i g n 是符号函数:
sign(x)=+1,1,x0x<0 s i g n ( x ) = { + 1 , x ≥ 0 − 1 , x < 0

感知机的解释:
线性方程 wx+b=0 w ⋅ x + b = 0 对应于特征空间 Rn R n 中的一个超平面 S S ,其中w为超平面的法向量,
b||w|| − b | | w | | 为原点到超平面的距离,这个超平面将特征空间划分成两个部分

2.2感知机学习策略

2.2.1

数据集为线性可分数据集

2.2.2

选择损失函数为误分类点到超平面 S S 的总距离,特征空间中任意一点x0到超平面 S S 的距离:

1||w|||wx0+b|

这里的 ||w|| | | w | | w w L2范数

对于误分类的数据 (xi,yi) ( x i , y i ) 来说:

yi(wxi+b)>0 − y i ( w ⋅ x i + b ) > 0

成立,那么误分类点 xi x i 到超平面 S S 的距离:
1||w||yi(wxi+b)

假设超平面 S S 的误分类点集合为M,那么所有误分类点到超平面的总距离:
1||w||xiMyi(wxi+b) − 1 | | w | | ∑ x i ∈ M y i ( w ⋅ x i + b )

不考虑 1||w|| 1 | | w | | 得到在给定数据集:
T={(x1,y1),(x2,y2),,(xN,yN)} T = { ( x 1 , y 1 ) , ( x 2 , y 2 ) , ⋯ , ( x N , y N ) }

其中 xiRn x i ∈ R n , yi{+1,1} y i ∈ { + 1 , − 1 } , i=1,2,,N i = 1 , 2 , ⋯ , N 感知机的损失函数为:
L(w,b)=xiMyi(wxi+b) L ( w , b ) = − ∑ x i ∈ M y i ( w ⋅ x i + b )

2.3感知机学习算法

求解感知机参数也就是损失函数极小化的问题:

minw,bL(w,b)=xiMyi(wxi+b) min w , b L ( w , b ) = − ∑ x i ∈ M y i ( w ⋅ x i + b )

采用随机梯度下降算法,首先任意选取一个超平面 w0,b0 w 0 , b 0 ,然后梯度下降法不断极小化目标函数
损失函数 L(w,b) L ( w , b ) 的梯度为:
wL(w,b)=xiMyixi ∇ w L ( w , b ) = − ∑ x i ∈ M y i x i

bL(w,b)=xiMyi ∇ b L ( w , b ) = − ∑ x i ∈ M y i

随机选取一个误分类点 (xi,yi) ( x i , y i ) w,b w , b 进行更新:
ww+ηyixi w ← w + η y i x i

bb+ηyi b ← b + η y i

其中 η η 为学习速率

算法流程

输入:训练数据集 T={(x1,y1),(x2,y2),,(xN,yN)} T = { ( x 1 , y 1 ) , ( x 2 , y 2 ) , ⋯ , ( x N , y N ) } 其中 xiRn,yi{+1,1},i=1,2,,N x i ∈ R n , y i ∈ { + 1 , − 1 } , i = 1 , 2 , ⋅ , N ;学习率 η(0<η1) η ( 0 < η ≤ 1 )
输出: w,b w , b ;感知机模型 f(x)=sign(wx+b) f ( x ) = s i g n ( w ⋅ x + b )
(1)选取初值 w0,b0 w 0 , b 0
(2)在训练集中选取数据 (xi,yi) ( x i , y i )
(3)如果 yi(wxi+b)0 y i ( w ⋅ x i + b ) ≤ 0

ww+ηyixi w ← w + η y i x i

bb+ηyi b ← b + η y i

(4)跳转至(2)直至训练集中没有误分类点

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值