树状DP第二题,这个题真的好复杂~~
题目大意:
有一个n个结点的树,问至少去掉几条边可以产生一个有p个节点的子树。
解题思路:
dp[i][j]表示以i号节点为根的子树,当有j个结点时最少需要去掉几条边。
初始化:当只有1个节点时,一定是连接它到孩子结点的所有边都去掉。
设某一孩子结点标号为v 则dp[i][j]=min(dp[i][j],dp[i][j-t]+dp[v][t]-1);
记录最小值是时,如果最小值在子树上需要加1,因为还有连接父亲结点的一条边没算。
下面是代码:
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <iostream>
#include <math.h>
#include <stdlib.h>
#include <vector>
#include <string>
#include <map>
#include <queue>
using namespace std;
int min(int a,int b)
{
if(a>b)a=b;
return a;
}
int max(int a,int b)
{
if(a<b)a=b;
return a;
}
struct node1
{
int to,next;
} edge[155];
int head[155],num[155],sum[155],cnt,n,p,u,v,ans;
void addedge(int u,int v)
{
edge[cnt].to=v;
edge[cnt].next=head[u];
head[u]=cnt++;
num[u]++;
}
int dp[155][155];
void dfs(int src)
{
dp[src][1]=num[src];
sum[src]=1;
if(head[src]!=-1)
{
int t=head[src];
while(t!=-1)
{
dfs(edge[t].to);
sum[src]+=sum[edge[t].to];
for(int i=sum[src]; i>1; i--)
{
for(int j=1; j<i; j++)
{
if(dp[src][i]==-1&&dp[src][i-j]!=-1&&dp[edge[t].to][j]!=-1)
{
dp[src][i]=dp[src][i-j]+dp[edge[t].to][j]-1;
}
else if(dp[src][i]!=-1&&dp[src][i-j]!=-1&&dp[edge[t].to][j]!=-1)
{
dp[src][i]=min(dp[src][i],dp[src][i-j]+dp[edge[t].to][j]-1);
}
}
}
t=edge[t].next;
}
}
if(dp[src][p]!=-1)
{
if(src==1)ans=min(ans,dp[src][p]);
else ans=min(ans,dp[src][p]+1);
}
}
int main()
{
while(scanf("%d%d",&n,&p)!=EOF)
{
if(n==1)
{
printf("0\n");
continue;
}
cnt=0;
ans=10000000;
memset(head,-1,sizeof(head));
memset(num,0,sizeof(num));
memset(sum,0,sizeof(sum));
memset(dp,-1,sizeof(dp));
for(int i=1; i<n; i++)
{
scanf("%d%d",&u,&v);
addedge(u,v);
}
dfs(1);
printf("%d\n",ans);
}
return 0;
}