POJ 1947 Rebuilding Roads

树状DP第二题,这个题真的好复杂~~


题目大意:

有一个n个结点的树,问至少去掉几条边可以产生一个有p个节点的子树。


解题思路:

dp[i][j]表示以i号节点为根的子树,当有j个结点时最少需要去掉几条边。

初始化:当只有1个节点时,一定是连接它到孩子结点的所有边都去掉。

设某一孩子结点标号为v  则dp[i][j]=min(dp[i][j],dp[i][j-t]+dp[v][t]-1);

记录最小值是时,如果最小值在子树上需要加1,因为还有连接父亲结点的一条边没算。


下面是代码:

#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <iostream>
#include <math.h>
#include <stdlib.h>
#include <vector>
#include <string>
#include <map>
#include <queue>
using namespace std;

int min(int a,int b)
{
    if(a>b)a=b;
    return a;
}
int max(int a,int b)
{
    if(a<b)a=b;
    return a;
}
struct node1
{
    int to,next;
} edge[155];
int head[155],num[155],sum[155],cnt,n,p,u,v,ans;
void addedge(int u,int v)
{
    edge[cnt].to=v;
    edge[cnt].next=head[u];
    head[u]=cnt++;
    num[u]++;
}
int dp[155][155];
void dfs(int src)
{
    dp[src][1]=num[src];
    sum[src]=1;
    if(head[src]!=-1)
    {
        int t=head[src];
        while(t!=-1)
        {
            dfs(edge[t].to);
            sum[src]+=sum[edge[t].to];
            for(int i=sum[src]; i>1; i--)
            {
                for(int j=1; j<i; j++)
                {
                    if(dp[src][i]==-1&&dp[src][i-j]!=-1&&dp[edge[t].to][j]!=-1)
                    {
                        dp[src][i]=dp[src][i-j]+dp[edge[t].to][j]-1;
                    }
                    else if(dp[src][i]!=-1&&dp[src][i-j]!=-1&&dp[edge[t].to][j]!=-1)
                    {
                        dp[src][i]=min(dp[src][i],dp[src][i-j]+dp[edge[t].to][j]-1);
                    }
                }
            }
            t=edge[t].next;
        }
    }
    if(dp[src][p]!=-1)
    {
        if(src==1)ans=min(ans,dp[src][p]);
        else ans=min(ans,dp[src][p]+1);
    }
}
int main()
{
    while(scanf("%d%d",&n,&p)!=EOF)
    {
        if(n==1)
        {
            printf("0\n");
            continue;
        }
        cnt=0;
        ans=10000000;
        memset(head,-1,sizeof(head));
        memset(num,0,sizeof(num));
        memset(sum,0,sizeof(sum));
        memset(dp,-1,sizeof(dp));
        for(int i=1; i<n; i++)
        {
            scanf("%d%d",&u,&v);
            addedge(u,v);
        }
        dfs(1);
        printf("%d\n",ans);
    }
    return 0;
}




转载于:https://www.cnblogs.com/lin375691011/p/3996641.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值