因为是个数学蒟蒻所以不探讨二项式反演的求法,这篇博客只有利用容斥原理的模板,时间复杂度 O ( l o g N ) O(logN) O(logN)
证明在这
公式 S ( n , k ) = 1 k ! ∑ i = 0 k ( − 1 ) i C k i ( k − i ) n S(n,k)=\frac{1}{k!}\sum_{i=0}^{k}{(-1)^iC_k^i(k-i)^n} S(n,k)=k!1∑i=0k(−1)iCki(k−i)n
组合数取模是利用费马小定理求的
void calJc() //求 maxn 以内的数的阶乘 不知道开多少就1e6吧爆不了
{
Jc[0] = Jc[1] = 1;
for(int i = 2; i < maxn; i++) Jc[i] = Jc[i - 1] * i % mod;
}
int pow(int a, int n, int p) // 快速幂取模
{
int ans = 1;
while (n)
{
if (n & 1) ans = ans * a % p;
a = a * a % p;
n >>= 1;
}
return ans;
}
int niYuan(int a, int b) //费马小定理求逆元
{
return pow(a, b - 2, b);
}
int C(int a, int b) // 组合数
{
if(a < b) return 0;
return Jc[a] * niYuan(Jc[b], mod) % mod * niYuan(Jc[a - b], mod) % mod;
}
int S(int n, int k)
{
int res = 0;
for (int i = 0; i <= k; i ++ )
{
if (i & 1) res = (res - (C(k, i) * pow(k - i, n, mod)) % mod) % mod;
else res = (res + (C(k, i) * pow(k - i, n, mod)) % mod) % mod;
}
while (res < 0) res += mod;
res = res * niYuan(Jc[k], mod) % mod;
return res;
}