论文阅读——ssFPN

该博客介绍了一种名为FPNScaleSequence(s²)的新方法,旨在提升深度学习目标检测模型对小目标的识别精度。作者将FPN视为尺度空间,并通过3D卷积在不同尺度的特征图上提取尺度不变特征,特别是在高分辨率金字塔特征图上。实验结果展示了该方法与当前最优方法的对比优势,并进行了消融实验以验证其各个组件的效果。
摘要由CSDN通过智能技术生成


目录

前言

问题是什么?

方法

效果

1、SOAT对比

2、消融实验

拓展


前言

论文链接:https://arxiv.org/pdf/2208.11533v2.pdf

        一种新的 FPN Scale Sequence(s²) 特征提取方法,以加强小目标的特征信息。作者将 FPN 结构视为尺度空间,并在 FPN 的水平轴上通过 3D 卷积提取 Scale Sequence(s²)特征。s²基本上是一个尺度不变的特征,建立在小目标的高分辨率金字塔特征图上。此外,所提出的特征可以扩展到大多数基于 FPN 的目标检测模型。


问题是什么?

小目标上的平均精度相对低于中型目标和大目标上的平均精度 。

        作者通过对MS COCO数据集进行分析发现,小目标所占比例更大,但是其平均检测精度最小。

        基于深度学习的目标检测模型已经使用特征金字塔网络(FPN)作为Neck模块来有效地处理多尺度目标。在检测head之前,根据它们的比例将它们分配到一个单独的金字塔层。例如,在低分辨率金字塔特征图中检测大目标,在高分辨率金字塔特征图中检测小目标。

        当输入图像输入 CNN 时,FPN 由通过每个卷积层的输出特征图组成。金字塔特征图的分辨率在卷积过程中变得更小。这种 FPN 架构类似于 Scale-SpaceFPN 的 level 轴可以被认为是 Scale 轴。因此,可以从 FPN 中提取尺度不变。这种方法也启发了FPN Scale Sequence(s²)的诞生。


方法

受尺度不变启发,可以将cnn卷积类比为高斯模糊的过程。本文将FPN视作尺度空间,将不同分辨率的FPN输出调整为相同分辨率进行拼接。

受视频时间序列启发,将不同尺度的FPN视作一项卷积运动存在,将输出视作视频帧,对其进行3D卷积。


效果

1、SOAT对比    

2、消融实验

        2.1

         2.2

        2.3


拓展

        1、什么是小目标:(1)尺寸小于32×32的物体 (2)宽高是原图宽高的十分之一以下

        2、尺度空间理论:尺度空间是沿着图像的尺度轴构建的。它代表的不是一个尺度,而是目标可以具有的各种尺度范围。空间是通过使用高斯滤波器模糊图像而不是直接调整图像大小来生成的。(就是说通过滤波手段变换图像空间,每个滤波可以看作一个空间,对应变化后的图像,是原图像在该空间的映射或者是表现形式。)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值