线性筛——素数筛,莫比乌斯筛,欧拉函数筛

质数筛

暴力版

1 bool prime(int n)
2 {
3     for(int i=2;i<=sqrt(n);i++)
4         if(n%i==0) return false;
5     
6     return true;
7 }

如果给定区间1到n,判断每一个数是不是质数,每个数都要从2开始暴搜,就某得灵魂。

普通筛:

 

bool isprime[maxn];//1代表是质数,0代表不是
void judge()
{
    memset(isprime,true,sizeof(isprime))//默认全都是质数
    for(int i=2;i<=maxn;i++)
    {
        if(isprime(i)){//i是质数
            for(int j=2;j*i<=maxn;j++)//那么i乘一个数就不是质数了
                isprime[j]=0;
        }
    }
}

 

这样就是一个线性的过程,从2开始到n筛,灵魂注入了一点,但弊端还是有,很多数被重复判断了。

真•线性筛(欧拉筛):

 

bool isprime[n];//1代表是质数,0代表不是
int  prime[n];//素数数组,从小到大装着1到n的素数
void judge()
{
    memset(isprime,true,sizeof(isprime))//默认全都是质数
    int tot=0
    for(int i=2;i<=n;i++)
    {
        if(isprime(i))//是质数
            prime[tot++]=i;//存到素数数组里

for(int j=0;j<tot&&prime[j]*i<n;j++) { isprime[ i * prime[j] ]=false; if(i%prime[j]==0)//保证每个合数都被它的最小素数筛掉 break; } } }

 

这个的思想和普通筛一样,但却避免了一个合数被多次判断。

        慢慢来,首先i无论是不是素数,i乘一个prime[j]肯定就不是素数,如何避免重复筛呢,首先合数是一定有质因子的(合数能分解质因数),所以要找到j的界限,保证一个合数只被判断一次,线性筛是从小到大的,自然是找每个合数的最小质因子了。

结论:如果 i 能整除 prime[j] ,此时j就不能++了, i *prime[j+1] 肯定会被 prime[ j]乘某个数筛掉;

 

证明:i 若能整除 prime[ j]

   则   i=k * prime[j]

   则   i *prime[ j+1]=k*prime[ j ] *prime[j+1] 

     则   i * prime[ j + 1] = k' *prime[ j ]

 所以每个合数都只会被它的最小质因数筛掉。

莫比乌斯筛

莫比乌斯函数:

现在如果要预处理处理1到n的莫比乌斯函数值,就可以用到上面的素数筛了;

分析:

    对于mu(x),x是质数的话,mu(x)=-1;

    如果x%p==0(p是质数),就意味着x有p这个质因子,所以x*p这个数就有p2这个质因子了,于是mu(x*p)=0;

 

bool isprime[n];
int prime[n],mu[n];
void get()
{
    memset(isprime,1,sizeof(isprime));
    int tot=0;
    for(int i=2;i<n;i++)
    {
        if(isprime(i)) prime[tot++]=i,mu[i]=-1;//如果i是质数,初始化mu为-1
        
        for(int j=1;j<=tot&&i*prime[j]<n;j++){
            
            isprime[i*prime[j]]=0;//和素数筛一样
            
            if(i%prime[j]==0){//素数筛的终止条件,
                mu[i*prime[j]]==0//对含有平方prime[j]因子的数mu值为0
                break;
            }
        }

    }
}

 欧拉函数筛

欧拉函数筛:

  欧拉函数:对整数n,欧拉函数是小于n的正整数中与n互质的数的数目。

  现在分析一下,如果p是质数,那么phi(p)=p-1;

         如果n为质数p的k次方,那么phi(n)=pk-pk-1,因为一个数不包含质数p的时候才会与n互质,那么包换p的数有1*p,2*p·····,pk-1*p共pk-1个,所以phi(n)=n个减p的k-1次方个。(n本身被pk-1*p减掉了);

         phi(p1p2)=phi(p1)phi(p2) ,很容易证。

  所以可以推出一个大结论:phi(n)= p1的k次方 * (11/p1)  *  p2的k次方 * (11p2)

                   =n*(11/p1)* (11p2);

用上素数筛的思想,如果p是x的因数,那么phi(x*p)=phi(x)*p;

         如果p不是x的因数,那么phi(x*p)=phi(x)*(p-1);

于是乎,可以线性了:    

bool isprime[n];
    int prime[n],tot=0;
    int phi[n];
    memset(isprime,1,sizeof(isprime));//默认都是质数
    for(int i=2;i<=n;i++)
    {
        if(sprime[i])
        {
            phi[i]=i-1;
            prime[tot++]=i;
        }
        
        for(int j=1; j<=tot && prime[j] * i<=n;j++)
        {
            isprime[i*prime[j]]=0;
            if(i%prime[j]==0){
                phi[i*prime[j]]=phi[i]*prime[j];//重要结论1
                break;
            }
            else
                phi[i*prime[j]]=phi[i] * (prime[j]-1);//重要结论2
        }
    }

 

可以看出,两个函数筛都是基于素数筛的,都是维护了合数的最小质因子。

 

转载于:https://www.cnblogs.com/qq2210446939/p/10821537.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值