回归模型效果评估系列1-QQ图

本文介绍了正态QQ图和普通QQ图的区别,并通过实例展示了如何使用Python绘制正态QQ图。正态QQ图用于评估数据是否符合正态分布,而普通QQ图则适用于比较任意分布数据的拟合效果。文中通过平滑预测曲线的QQ图分析,展示了预测分布与实际分布的差异。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

(erbqi)导语  QQ图全称 Quantile-Quantile图,也就是分位数-分位数图,简单理解就是把两个分布相同分位数的值,构成点(x,y)绘图;如果两个分布很接近,那个点(x,y)会分布在y=x直线附近;反之则不;可以通过QQ图从整体评估回归模型的预测效果
 

QQ图一般有两种,正态QQ图和普通QQ图,区别在于正态QQ图中其中有一个分布是正态分布,下面来看下这两种分布

正态QQ图

 下图来自这里                                                  使用Filliben's estimate来确定n分点

下面我们尝试绘制正态QQ图

使用开源库自带函数,很简单,但是可能一些细节看不到

import numpy as np 
from matplotlib import pyplot as plt
import matplotlib
matplotlib.style.use('ggplot')
# 用正态分布随机生死100个数据
x = np.round(np.random.normal(loc=0.0, scale=1.0, size=100),2)
from scipy.stats import probplot
f = plt.figure(figsize=(8, 6))
ax = f.add_subplot(111)
probplot(x, plot=ax)
plt.show()

 

 下面展开一些细节,为下面我们的普通QQ做点铺垫

import sys,os
import pandas as pd 
import numpy as np 
from scipy.stats import norm,linregress
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值