如何判断器件的晶振有没有起振?如何通过示波器查看晶振的波形(用示波器测量晶振是否起振了)或者可以测量晶振的电压????

单片机外部晶振需要通过烧录程序配置寄存器才能起振,未配置的晶振不会工作。博客介绍了如何通过示波器和万用表来检测晶振是否正常工作,强调了新单片机在没有配置前无法使晶振起振的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

w5500(SPI转以太网)和MCP2515(SPI转CAN)都自带晶振
应该是(外接晶体+芯片内部的谐振电路)
因为晶体需要连接谐振电路才能起振
单片机的时钟就是MCU内部的谐振电路外加晶体提供的。

STM32外部晶振不起振

https://blog.csdn.net/qq_33559992/article/details/83009134?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522162885171416780366558740%2522%252C%2522scm%2522%253A%252220140713.130102334.pc%255Fall.%2522%257D&request_id=162885171416780366558740&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2allfirst_rank_v2~rank_v29-13-83009134.pc_search_similar&utm_term=%E6%80%8E%E4%B9%88%E5%88%A4%E6%96%AD%E5%8D%95%E7%89%87%E6%9C%BA%E7%9A%84%E6%99%B6%E6%8C%AF%E6%9C%89%E6%B2%A1%E6%9C%89%E8%B5%B7%E6%8C%AF&spm=1018.2226.3001.4187
单片机外部晶振接的是无源晶振,因此必须首先烧写程序进去,配置好相应的寄存器,晶振才会起振。如果没有烧写程序的新单片机(未配置寄存器)则不会起振。

示波器测量晶振、万用表测量晶振的方法

https://blog.csdn.net/weixin_37787043/article/details/92439522?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522162885272216780261931844%2522%252C%2522scm%2522%253A%252220140713.130102334.pc%255Fall.%2522%257D&request_id=162885272216780261931844&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2allfirst_rank_v2~rank_v29-2-92439522.pc_search_similar&utm_term=%E6%99%B6%E6%8C%AF%E7%9A%84%E7%94%B5%E5%8E%8B%E6%80%8E%E6%9C%AB%E6%B5%8B%E9%87%8F&spm=1018.2226.3001.4187

### 测量开关器件无吸收电路时的谐频率 为了通过示波器测量开关器件在无吸收电路情况下的谐频率 \( f_0 \),可以通过观察串联谐电路的行为来实现。以下是具体方法: #### 方法概述 在一个典型的串联谐电路中,当达到谐频率时,总电抗为零,此时反馈作用最强,并且满足幅起条件[^1]。利用这一特性,在实验过程中可以调整信号源的频率直到找到对应的谐点。 #### 实验设置 1. **构建测试环境** 将待测开关器件连接到一个已知的串联谐电路中,确保电路配置与实际应用一致。例如,使用晶振作为选频元件,并将其接入正反馈路径中。 2. **施加扫频信号** 使用函数发生器向电路输入一个可变频率的正弦波信号。此信号应覆盖可能的谐范围。 3. **观测响应曲线** 利用双通道示波器分别监测输入端口和输出端口处的电压变化情况。特别注意记录两者之间的幅度差以及相位关系随时间的变化趋势。 4. **确定最大增益位置** 谐状态下,由于阻抗最小化效应,输出功率将达到峰值水平。据此定位对应的工作频率即为目标值\(f_0\)。 #### 数据分析 通过对采集数据进一步处理可以获得更精确的结果。比如采用FFT变换技术提取主导成分频率信息;或者借助MATLAB等工具绘制Bode图辅助判断最佳匹配点。 ```matlab % MATLAB Code Example for FFT Analysis fs = 1e6; % Sampling Frequency t = 0:1/fs:(length(signal)-1)/fs; Y = fft(signal); P2 = abs(Y/length(t)); P1 = P2(1:length(t)/2+1); P1(2:end-1) = 2*P1(2:end-1); f = fs*(0:(length(P1)-1))/length(t); plot(f,P1); title('Single-Sided Amplitude Spectrum of signal'); xlabel('Frequency (Hz)') ``` 上述代码片段展示了如何运用快速傅里叶转换(Fast Fourier Transform, FFT)算法解析采样序列中的主要周期性特征及其关联强度分布状况。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

学无止境2022

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值