P3811 【模板】乘法逆元

get到新的求逆元方法了!

逆元在我的理解,就是模意义下的倒数。这个模一般是质数。没见过不是质数的。

所以总结下三个求逆元方法:

  1. exgcd

原式\(a \times a^{-1} \equiv 1 \pmod p\)

根据同余的性质转换为\(a \times a^{-1}-kp=1\)

使用exgcd求出\(ax+bp=gcd(a,b)\)

同样有这个比例式\(a^{-1}:x=1:gcd(a,p)\)

所以\(a^{-1} = \frac{x}{gcd(a,p)}\),然后用bg调整解。\(bg=\frac{p}{gcd(a,p)}\)

不过一般情况下\(a \bot p\),即\(gcd(a,p)=1\)

  1. 费马小定理

\(a \bot p\),则有\(a^{p-1} \equiv 1 \pmod p\)

左边展开就是\(a \times a^{p-2} \equiv 1 \pmod p\)

所以所说的\(a^{-1}=a^{p-2}\)

  1. 线性求逆元

\(p=r \times i+t\),则有\(r=\lfloor \frac{p}{i} \rfloor,t=p \mod i\)

显然有同余方程\(r \times i + t \equiv 0 \pmod p\)

同乘以\(i^{-1}\times t^{-1}\)\(r\times t^{-1}+i^{-1}\equiv0\pmod p\)

移项得\(i^{-1} \equiv -r\times t^{-1} \pmod p\)

代入上面关于\(r和p\)的两个式子即可得到线性递推公式。

注意我们要预先处理出1的逆元,显然是1。

接下来就从2开始递推。

代码:

#include<cstdio>

const int maxn = 3e6 + 5;
#define ll long long
ll n, p;
ll inv[maxn];
int main()
{
    scanf("%lld%lld", &n, &p);
    inv[1] = 1;
    // p = k * i + r
    // k * i + r === 0 (mod p)
    // k * inv[r] + inv[i] === 0 (mod p)
    // inv[i] === -k * inv[r] (mod p)
    // k = p / i, r = p % i
    for(int i = 2; i <= n; i++)
    {
        inv[i] = -(p / i) * inv[p % i];
        inv[i] = (inv[i] % p + p) % p;
    }
    for(int i = 1; i <= n; i++) printf("%lld\n", inv[i]);
    return 0;
}

转载于:https://www.cnblogs.com/Garen-Wang/p/9745845.html

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值